假設函式f x 在區間a,b上連續可導做輔助函式F

2021-05-29 11:29:20 字數 3144 閱讀 9546

1樓:發了瘋的大榴蓮

證明:做變數替換a+b-x=t,則dx=-dt,當x=b,t=a,當x=a,t=b

於是∫(a,b)f(a+b-x)dx

=-∫(b,a)f(t)dt

= ∫(a,b)f(t)dt

=∫(a,b)f(x)dx

即∫(a,b)f(x)dx=∫(a,b)f(a+b-x)dx

2樓:匿名使用者

^因為積分割槽域d關於直線y=x對稱,所以二重積分滿足輪換對稱性,即∫∫(d) e^[f(x)-f(y)]dxdy=∫∫(d) e^[f(y)-f(x)]dxdy

=(1/2)*

=(1/2)*∫∫(d) dxdy

>=(1/2)*∫∫(d) 2*√dxdy=∫∫(d) dxdy

=(b-a)^2

函式f(x)在區間[a,b]上連續是f(x)可積的( )條件

3樓:不是苦瓜是什麼

連續是可積的充分非必要條件。

因為在區間上連續就一定有原函式,根據n-l公式得定積分存在。

反之,函式可。

對於一元函式有,可微<=>可導=>連續=>可積對於多元函式,不存在可導的概念,只有偏導數存在。函式在某處可微等價於在該處沿所有方向的方向導數存在,僅僅保證偏導數存在不一定可微,因此有:可微=>偏導數存在=>連續=>可積。

可導與連續的關係:可導必連續,連續不一定可導;

可微與連續的關係:可微與可導是一樣的;

可積與連續的關係:可積不一定連續,連續必定可積;

可導與可積的關係:可導一般可積,可積推不出一定可導。

4樓:匿名使用者

連續是可積的充分非必要條件,不要信樓上那幾個.

因為在區間上連續就一定有原函式,根據n-l公式得定積分存在.

反之,函式可積不能推出連續,只要函式在[a,b]上單調,或在[a,b]上有界且間斷點個數有限,就可以積分.

5樓:徐臨祥

推薦回答連續是可積的充分非必要條件,不要信樓上那幾個. 因為在區間上連續就一定有原函式,根據n-l公式得定積分存在. 反之,函式可積不能推出連續,只要函式在[a,b]上單調,或在[a,b]上有界且間斷點個數有限,就可以積分.

6樓:116貝貝愛

結果為:必要條件

解題過程如下:

性質:若函式y=f(x)在某個區間是增函式或減函式,則就說函式在這一區間具有(嚴格的)單調性,這一區間叫做函式的單調區間。此時也說函式是這一區間上的單調函式。

如果對於屬於i內某個區間上的任意兩個自變數的值x1、x2,當x1相反地,如果對於屬於i內某個區間上的任意兩個自變數的值x1、x2,當x1f(x2),那麼f(x)在這個區間上是減函式。

函式在某一區間內的函式值y,隨自變數x的值增大而增大(或減小)恆成立。若函式y=f(x)在某個區間是增函式或減函式,則就說函式在這一區間具有(嚴格的)單調性,這一區間叫做函式的單調區間。此時也說函式是這一區間上的單調函式。

數學分析題, 設函式f(x)在[a,b]上連續,在(a,b)上可導且f(a)=f(b),證明:存在§∈(a,b)使得得f(§)+f'(§)= 20

7樓:匿名使用者

函式f(x)上的一點a(§,f(§))的切線斜率為f'(§),過a點作x軸的垂

線交於x軸於b點(§,0),切線交x軸於c點,在rt△abc中,bc=ab/(tan(180-α)=-ab/tan(α)=-f(§)/f'(§),因為函式在 (a,b)內連續,因此必然存在bc=1,此時-f(§)/f'(§)=1,f(§)+f'(§)=0.

8樓:匿名使用者

如果是f(a)=f(b)=0則,可以令f(x)=e^xf(x),用羅中值定值可得答案。

如果上述條件不滿足,則有反例

令f(x)=1,則有,對所有x,f(x)+f'(x)=1+0=1,不可能等於0

9樓:白嘩嘩的大腿

可導函式就是在定義域內,每個值都有導數.可導函式的條件是在定義域內,必須是連續的.可導函式都是連續的,但是連續函式不一定是可導函式.

像樓上說的y=|x|,在x=0上不可導.即使這個函式是連續的,但是lim(x趨向0+)y'=1,lim(x趨向0-)y'=-1,兩個值不相等,所以不是可導函式。

10樓:翱翔千萬裡

在蝳坦曱甴剸一冒雨直上理 平下實下一上理

假設函式f(x)在[a,b]上連續,證明積分上限函式φ(x)=∫f(t)dt在[a,b]上可導

11樓:匿名使用者

:試證明fx在[a,b]上可積,則f(x)=f(t)dt在上連續 第六項第一題

答:f(x)在[a,b]上可積, 則 f(x)在[a,b]上有界, 所以,存在m,使得 |f(x)|≤m △f=f(x+△x)-f(x) =∫(x→x+△x)f(t)dt |△f|=|∫(x→x+△x)f(t)dt| ≤|∫(x→x+△x)mdt| =m·|△t| ∴lim(△t→0)△f=0 ∴f(x)連續

12樓:攻丶

m那裡不應該有積分號,其它都很完美。

設f(x)在[a,b]上連續,在(a,b)內可導,且f(a)=f(b)=0?

13樓:匿名使用者

令g(x)=e^x*f(x),則g(x)在[a,b]上連來續且在(a,b)上可導

因為自g(a)=g(b)=0,所以根據羅爾定理,至少存在一點ξ∈(a,b),使得g'(ξ)=0

e^ξ*f(ξ)+e^ξ*f'(ξ)=0

f(ξ)+f'(ξ)=0證畢

14樓:基拉的禱告

詳細過程如圖,希望能幫到你解決問題

希望寫的很清楚

15樓:凋零哥の猈

利用柯西中來值定理證明。

自設g(x)=lnx,

則根據條件可知:

f(x),g(x)在(a,b)上滿足柯西中值定理條件,∴在(a,b)上存在ξ,使得:

[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)

即:[f(b)-f(a)]/ln(b/a)=f'(ξ)/(1/ξ)移項整理即得:f(b)-f(a)=ξf'(ξ)ln(b/a)

函式f(x)在區間連續可導。這邊的連續可導是指導函式連續還是

函式f x 在區間連續可導,是指函式f x 本身在區間連續可導,既不是指f x 的導函式也不是指它的原函式 當然是原函式連續可導,導函式又是另外一個新的函式。原函式連續,且原函式可導,即原函式的導數存在,並沒有描述導數的性質,至於其導數是否連續不知道。可導必連續,指的是導函式連續還是原函式連續?原函...

若Fx在區間I上可導,則Fx一定連續嗎

是的 為可導的條件是 有定義,有極限且極限值等於函式值,連續 回所以若函式在某一點 答可導,則必連續。導數就是在函式影象上某一點的切線的斜率。那麼如果函式在這一點沒有定義,也就是說定義域中不包含這一點的話,顯然在這一點就沒有切線,也就是不可導 連續就是說函式影象沒有斷點,而是一條連續不斷的函式影象。...

1定理若函式fx的圖象在區間上連續,且在

證明 f x lnx,f 1 x y 1分 注1 只要構造出函式f x lnx即給1分 故lny lnx y x 又y x y y x y x x 2分 即1 y x lny lnx y x 1 0 x y 3分 證明 由 式可得2 1 2 ln2 ln1 2 1 1 3 2 2 ln3 ln2 3...