上連續,在 a,b 上可導,且f a f b 0 試證 在 a,b 記憶體在一點n,使得fn f n

2021-04-18 03:00:40 字數 3703 閱讀 2992

1樓:討厭

設f(x)=f(x)/e^x,則f(a)=f(b)=0,所以存在n屬於(a,b),使得f'(n)=[f'(n)-f(n)]/e^n=0,即原命題成立

設函式f(x)在[a,b]上連續,在(a,b)內可導,且f(a)=f(b)=0.

2樓:鬱晴霞賁容

建構函式f(x)=

f(x)×e^(g(x)),則f(x)在[a,b]上連續,在(a,b)內可導,且f(a)=f(b)=0,由羅爾中值定理,存在一個ξ

回∈(a,b),使答f'(ξ)=0,此即f'(ξ)+f(ξ)g'(ξ)=0.

3樓:匿名使用者

設g(x)=f(x)e^-½x,由題意知來個源g(x)連續且可導,又∵g(a)=g(b)=0,由有限增量公式得必有g'(§)=0g'(§)=(f'(§)e^-½§)-(½f(§)e^-½§)=0即2f'(§)=f(§)證畢。

設函式f(x)在[a,b]上連續,在(a,b)上可導,且f(a)=f(b)=0.試證:在(a,b)記憶體在一點n,使得f ' (n)+f(n)=0

4樓:福雲德休碧

令baig(x)=f'(x)+f(x),即要證明存在n屬於(a,b)使得g(n)=0.

1.當f'(a)與duf'(b)異號時zhi。daog(a)*g(b)=(f'(a)+f(a))*(f'(b)+f(b))=f'(a)*f'(b)<0.

故在內(a,b)內一定存在容n使得g(n)=0.

2.當f'(a)與f'(b)同號時。因為f(a)=f(b)=0,所以一定存在c屬於(a,b)使得f(c)=0這時就可以仿照上面的證明,把上面的b替換成c即可。

這樣的題目畫一下圖更好理解

5樓:匿名使用者

令g(x)=f'(x)+f(x),即要證明存在n屬於(a,b)使得g(n)=0.

1.當f'(a)與f'(b)異號時。內g(a)*g(b)=(f'(a)+f(a))*(f'(b)+f(b))=f'(a)*f'(b)<0.

故在(a,b)內一定存在n使得g(n)=0.

2.當f'(a)與f'(b)同號時。因為f(a)=f(b)=0,所以一定存在c屬於(a,b)使容得f(c)=0這時就可以仿照上面的證明,把上面的b替換成c即可。

這樣的題目畫一下圖更好理解

【中值定理證明題】設函式f(x)在[a,b]上連續,在(a,b)上可導,且f(a)f(b)>0,f(a)f((a+b)/2)<0

6樓:匿名使用者

由抄f(a)f((a+b)/2)<0,可知(a,(a+b)/2)上存在baix1,使得duf(x1)=0,由f(a)f(b)>0,同理可zhi知((a+b)/2,b)上存在x2,使得f(x2)=0,構造dao函式g(x)=f(x)/e^kx,g(x1)=g(x2)=0,g(x)在[x1,x2]可導且連續,在(x1,x2)中至少存在一點ξ,使g『(ξ)=0,即f'(ξ)=kf(ξ),綜上,對於任意實數k,在(a,b)中至少存在一點ξ,使f'(ξ)=kf(ξ)成立

數學分析題, 設函式f(x)在[a,b]上連續,在(a,b)上可導且f(a)=f(b),證明:存在§∈(a,b)使得得f(§)+f'(§)= 20

7樓:匿名使用者

函式f(x)上的一點a(§,f(§))的切線斜率為f'(§),過a點作x軸的垂

線交於x軸於b點(§,0),切線交x軸於c點,在rt△abc中,bc=ab/(tan(180-α)=-ab/tan(α)=-f(§)/f'(§),因為函式在 (a,b)內連續,因此必然存在bc=1,此時-f(§)/f'(§)=1,f(§)+f'(§)=0.

8樓:匿名使用者

如果是f(a)=f(b)=0則,可以令f(x)=e^xf(x),用羅中值定值可得答案。

如果上述條件不滿足,則有反例

令f(x)=1,則有,對所有x,f(x)+f'(x)=1+0=1,不可能等於0

9樓:白嘩嘩的大腿

可導函式就是在定義域內,每個值都有導數.可導函式的條件是在定義域內,必須是連續的.可導函式都是連續的,但是連續函式不一定是可導函式.

像樓上說的y=|x|,在x=0上不可導.即使這個函式是連續的,但是lim(x趨向0+)y'=1,lim(x趨向0-)y'=-1,兩個值不相等,所以不是可導函式。

10樓:翱翔千萬裡

在蝳坦曱甴剸一冒雨直上理 平下實下一上理

設函式f(x)在[a,b]上連續,在(a,b)可導,且f(a)*f(b)>0,f(a)*f((a+b)/2)<0,求證對任意實數k,

11樓:匿名使用者

設f(x)=e^(-kx)f(x)

由f(a)*f(b)>0,f(a)*f((a+b)/2)<0可知f(a)*f(b)>0

f(a)*f((a+b)/2)<0

從而可得f(a),f(b)同號 f((a+b)/2)與f(a)異號 f(b)同號

不妨設f(a)>0 f(b)>0 f((a+b)/2)<0由零點定理可得 在(a,(a+b)/2) 和((a+b)/2,b)之間f(x)有兩

內個零容點

假設為f(m)=f(n)=0

由於f(x)在[a,b]上連續,在(a,b)可導由羅爾定理可得

至少存在一點&,屬於(a,b),f'(&)=0即f'(&)=kf(&)

設函式f(x)在區間[a,b]上連續,且f(a)b。證明存在ξ∈(a,b),使得f(ξ)=ξ

12樓:

令g(x)=f(x)-x,由題意知g(x)連續g(a)=f(a)-a<0,g(b)=f(b)-b>0∴g(a)g(b)<0

∴根據零點定理可以知道存在ξ∈(a,b),使得g(ξ)=0,即 f(ξ)-ξ =0,得證。

零點定理:

設函式f(x)在[a,b]上連續,且f(a)f(b)<0,則存在ξ∈(a,b),使得f(ξ)=ξ

13樓:匿名使用者

證明:記f(x)=f(x)-x,顯然它在[a,b]上連續且f(a)=f(a)-a<0,f(b)=f(b)-b>0由連續函式介值定理知存在ξ∈(a,b),使得f(ξ)=f(ξ)-ξ=0

即存在ξ∈(a,b),使得f(ξ)=ξ,命題得證。

14樓:匿名使用者

高等數學,課本上好像有證明過程,以前證過,現在忘了!不好意思!

設函式f(x)在[a,b]上連續,在(a,b)內可導(0

15樓:紫濤雲帆

利用柯西中值定理證明。

設g(x)=lnx,則根據條件可知:

f(x),g(x)在(a,b)上滿足柯西中值定理條件,∴在(a,b)上存在ξ,使得:

[f(b)-f(a)]/[g(b)-g(a)]=f'(ξ)/g'(ξ)

即:[f(b)-f(a)]/ln(b/a)=f'(ξ)/(1/ξ)移項整理即得:f(b)-f(a)=ξf'(ξ)ln(b/a)

16樓:援手

令g(x)=lnx,則g'(x)=1/x,對f(x)和g(x)使用柯西中值定理,有[f(b)-f(a)]/(lnb-lna)=f'(ξ)/(1/ξ),整理後就是f(b)-f(a)=ξf'(ξ)lnb/a

上連續,在(a,b)可導,但是它的導數恆不等於0,是否可以說明該函式沒有極值

在 a,b 的區間端點處取極值。有限區間,函式可導,肯定有極值啊 一般在兩個端點,因為若極值在中間點,那點導數必然為0.例如y x 導數恆等於1 最小值在x a,ymin a 最大值在x b,ymax b 俊狼獵英團隊為您解答 導數不等於0,就是找不到極點,所以在區間上極值。至少在 a,b 是沒有極...

假設函式f x 在區間a,b上連續可導做輔助函式F

證明 做變數替換a b x t,則dx dt,當x b,t a,當x a,t b 於是 a,b f a b x dx b,a f t dt a,b f t dt a,b f x dx 即 a,b f x dx a,b f a b x dx 因為積分割槽域d關於直線y x對稱,所以二重積分滿足輪換對稱...

設fx在r上可導,且fxfx0,證明fx至多隻有零點

令g x e xf x g x e x f x f x 0,g x 單調遞增,至多隻有一個零點,因此f x 至多隻有一個零點。f x 在r可導,f x f x 0,證明f x 0最多有一個實根 40 建構函式 x 1 2 f x 2 f x 則 x f x f x 依題意,f x f x 0 即 x...