函式f(x)在區間連續可導。這邊的連續可導是指導函式連續還是

2021-04-19 22:45:33 字數 1566 閱讀 9493

1樓:

函式f(x)在區間連續可導,是指函式f(x)本身在區間連續可導,既不是指f(x)的導函式也不是指它的原函式

2樓:匿名使用者

當然是原函式連續可導,導函式又是另外一個新的函式。

3樓:い神ペ話

原函式連續,且原函式可導,即原函式的導數存在,並沒有描述導數的性質,至於其導數是否連續不知道。

可導必連續,指的是導函式連續還是原函式連續?

4樓:紫月開花

原函式一定連續,因為原函式有導函式,所以原函式必定連續,但應該與導函式是否連續無關

5樓:匿名使用者

可導必連續

f(x)可導=> f(x)連續

請問原函式在區間內可導且連續,那麼其導函式也一定可導且連續嗎?

6樓:匿名使用者

我覺得好像不行,不一定有二階導數吧

7樓:天蠍

原函式連續且可導,只能說明其導函式處處存在,不能說明導函式連續。

原函式連續可導,那麼導函式連續嗎

8樓:匿名使用者

對一元函式來說:一函式存在導函式,說明該函式處處可導,故原函式一定連續。(可導一定連續)

如果一個函式在x0處可導,那麼它一定在x0處是連續函式。

函式可導定義:

(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

(2)若對於區間(a,b)上任意一點m,f(m)均可導,則稱f(x)在(a,b)上可導。

擴充套件資料

若f(x)在區間(a,b)內可導,其函式即函式f(x)在(a,b)內每點都存在導數,但其導函式f'(x)在內部(a,b)不一定連續;

所謂f(x)在區間(a,b)內連續可導,不僅函式f(x)在(a,b)內每點都存在導數,且其導數函式f'(x)在(a,b)內連續。

羅爾定律:

設函式f(x)在閉區間[a,b]上連續(其中a不等於b),在開區間(a,b)上可導,且f(a)=f(b),那麼至少存在一點ξ∈(a、b),使得f『(ξ)=0。羅爾定理是以法國數學家羅爾的名字命名的。羅爾定理的三個已知條件的意義。

①f(x)在[a,b]上連續表明曲線連同端點在內是無縫隙的曲線;

②f(x)在內(a,b)可導表明曲線y=f(x)在每一點處有切線存在;

③f(a)=f(b)表明曲線的割線(直線ab)平行於x軸;羅爾定理的結論的直幾何意義是:在(a,b)內至少能找到一點ξ,使f』(ξ)=0,表明曲線上至少有一點的切線斜率為0,從而切線平行於割線ab,與x軸平行。

9樓:府菁公良若彤

我來補充下一樓:

原函式連續,並且導數存在,導函式依然不一定連續。

例如f(x)=x^2*sin(1/x),當x不等於0時f(x)=0,當x=0時

這個函式,它在定義域的每一點都可導,但是它的導數不連續。

假設函式f x 在區間a,b上連續可導做輔助函式F

證明 做變數替換a b x t,則dx dt,當x b,t a,當x a,t b 於是 a,b f a b x dx b,a f t dt a,b f t dt a,b f x dx 即 a,b f x dx a,b f a b x dx 因為積分割槽域d關於直線y x對稱,所以二重積分滿足輪換對稱...

函式在區間一致連續則其在區間內可導

不對。所謂 導函式在這個區間上 的值不趨向無窮 就是說原函式在該區間上版可導。而函式在某區間上連續權是在該區間上可導的必要不充分條件。例如f x x 在x 0點處連續不可導,再如狄利克萊函式處處連續處處不可導。函式在某一區間內可導,在這區間內是否連續 對於一元函式而言,連續是可導的先決條件。要在區間...

若Fx在區間I上可導,則Fx一定連續嗎

是的 為可導的條件是 有定義,有極限且極限值等於函式值,連續 回所以若函式在某一點 答可導,則必連續。導數就是在函式影象上某一點的切線的斜率。那麼如果函式在這一點沒有定義,也就是說定義域中不包含這一點的話,顯然在這一點就沒有切線,也就是不可導 連續就是說函式影象沒有斷點,而是一條連續不斷的函式影象。...