求由拋物線YX,直線YX2所圍成的平面圖形的面積

2021-05-31 19:14:13 字數 1782 閱讀 1785

1樓:匿名使用者

解:y=x²與y=x+2所圍成的圖形面積=∫<-1,2>(x+2-x²)dx=3/2

y=cosx與x軸所圍成的平面圖形的面積=2∫<-π/2,π/2>cosxdx=4

y=sinx,x=0,x=2和x軸所圍成的圖形面積=∫<0,2>sinxdx=1-cos2

y=x+1/x,x=1,x=2和x軸所圍成的圖形面積=∫<1,2>(x+1/x)dx=3/2+ln2

2樓:匿名使用者

這要用定積分算。。。在知道上打這個。。。不太輕鬆

求由拋物線y=x平方與直線y=-x+2所圍成的平面圖形的面積

3樓:匿名使用者

聯立兩方程:y = x²; y =-x+2解得兩曲線的兩交點為(1,1),(-2,4)由定積分的幾何意義知:

兩曲線圍成的面積為在積分割槽間[-2,1]內直線y=-x+2與x軸圍成的面積與拋物線y=x²與x軸圍成的面積之差。

∴s = ∫<-2,1> (2-x)dx - ∫<-2,1> x² dx = 15/2 - 3 = 9/2

注:<-2,1>表示積分割槽間。

4樓:匿名使用者

二重積分

積分下dx積分下dy

前一個區間是0到1,第二個是x平方到x

最後結果是1/6

5樓:微風向無風

27/6,微積分知識,畫圖求交點,計算。不過我計算有時很不小心的。圖形畫個大概就好。自己加油吧!

求由曲線y=1/x和直線y=x,x=2所圍成的平面圖形的面積

6樓:我是一個麻瓜啊

圍成的平面圖形的面積解法如下:

知識點:定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。

定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

擴充套件資料

定積分性質:

1、當a=b時,

2、當a>b時,

3、常數可以提到積分號前。

4、代數和的積分等於積分的代數和。

5、定積分的可加性:如果積分割槽間[a,b]被c分為兩個子區間[a,c]與[c,b]則有

又由於性質2,若f(x)在區間d上可積,區間d中任意c(可以不在區間[a,b]上)滿足條件。

6、如果在區間[a,b]上,f(x)≥0,則

7、積分中值定理:設f(x)在[a,b]上連續,則至少存在一點ε在(a,b)內使

7樓:匿名使用者

這是一道數學題取錢買的1x次獻身賣店cx等於20,為什麼拼命圖形的面積等於是?長乘寬除以二。

8樓:慕涼血思情骨

圖可能畫的不太好,s1的話是x=1和y=x和x軸圍成的面積。s2是y=1/x與x軸圍成的面積。而不是上面那個封閉的圖形,可以多看一下例題。就可以知道哪個才是應該算的面積了。

9樓:百駿圖

答案是1/2+ln2

10樓:寂寞33如雪

直接做圖,看所圍成的影象,然後再利用導函式裡面的定積分就可以做了!

求由曲線y x 2與直線y x所圍成的圖形的面積,要具體步驟

涉及定積分 令y 有y 1 3 x 3 y x 2令z 有z 1 2 x 2 z x交點 1,1 0,0 s z 1 z 0 y 1 y 0 1 6這是標準做法。一次函式下面的面積好求,二次的只能這樣求。補充 牛頓 萊布尼茨公式 如果f x f x 那麼函式f x 在 a至b 下的面積 有正負,在上...

計算由曲線y x 2與直線y x,y 2x所圍成的平面圖形的面積

解 令x x,解得x 0或x 1 令x 2x,解得x 0或x 內2s 0 1 2x x dx 1 2 2x x dx x 2 容 0 1 x x 3 1 2 1 2 2 2 2 3 1 1 3 11 4 2 6 計算由曲線y 2 2x,y x 4所圍成的圖形的面積 先求交點,聯抄 立y 2x,y x...

求由曲線y x 2及y x 3所圍成的平面圖形繞X軸旋轉所成旋轉體的體積V

是體積bai關於百x的代數du式吧?不然都是度正無窮zhi daof x 繞x旋轉的旋轉體體積為 內v x 容 f 問2 x dx 所以對於答y x 2 v x x 5 5 同理對於y x 3 v x x 7 7 對於y x n v x x 2n 1 2n 1 求曲線y x和y x 所圍成的圖形繞軸...