1樓:匿名使用者
解:曲線交點(0,0)、(1,1)
v=∫(0--1)π(x-x^4)dx=π(1/2x²-1/5x^5)|0--1
=π(1/2-1/5)=3π/10
2樓:匿名使用者
x定義域[0,1],v=dv=2π∫(√x-x^2)dx=2π[2/3(x)^3/2-x^3/3](0,1)=2π/3
求曲線y=x^2和y=2—x^2所圍成的平面圖形繞x軸旋轉而得的旋轉體的體積
3樓:匿名使用者
曲線交點(0,0)、(1,1)
v=∫(0--1)π(x-x^4)dx=π(1/2x²-1/5x^5)|0--1
=π(1/2-1/5)=3π/10
4樓:始霞賞婉
這個體積公式,y=f(x),x=a,x=b,x軸圍成的曲邊梯形繞x軸旋轉一週形成的實心立體的體積公式
v=π∫(0,1)f^2(x)dx
你現在求的是兩個題體積的差,帶入公式就得到上面的解題過程。
求由y=x^2,y=x所圍成的平面圖形的面積和繞x軸旋轉所得旋轉體的體積
5樓:匿名使用者
解 先作圖(此處略),得知該圖形在 x 軸上的投影是區間 [0,1]。
(1) 圖形在 x∈[0,1]處的面積微元da(x) = (x-x^2)dx,
故所求面積為
a = ∫[0,1]da(x) = ∫[0,1](x-x^2)dx = 1/6。
(2) 圖形在 x∈[0,1]處的旋轉體的體積微元dv(x) =π (x^2-x^4)dx,故所求體積為
v = ∫[0,1]da(x) = π∫[0,1](x^2-x^4)dx = π/12。
6樓:匿名使用者
畫個座標圖,y=x是一條直線,用y=x的定積分減去y=x^2的定積分就是所圍成的面積了,起點就是原點,終點就是交點 ,1/2-1/3=1/6就是圍成的面積了 ,以及該平面圖形繞x軸旋轉轉一週所得旋轉體的體積應為1/3л
將由曲線y=x和y=x^2所圍成的平面圖形繞x軸旋轉一週,求所得旋轉體的體積
7樓:匿名使用者
直線與曲線的交點:(0,0)、(1,1),所圍區域是第一象限內一弓形,繞 x 軸旋轉一週後外形似一圓錐;
v=∫π(y1²-y2²)dx=[(π*1²)*1]/3﹣∫π(x²)²dx=(π/3)﹣(π/5)*x^5|=2π/15;
曲線y=x²與直線x=1及x軸所圍成的平面圖形繞y軸旋轉一週得到的旋轉體體積是多少?
8樓:drar_迪麗熱巴
答案為π/2。
解題過程如下:
先求y=1,y軸與y=x²所圍成的圖形旋轉一週得到的旋轉體體積,再利用整體圓柱的體積π減去上述體積即為所求,其中y=x²要化為x等於√y。公式如下:
v=π-∫(0,1)π(√y)²dy
=π-π/2[y²](0,1)
=π-π/2
=π/2
二次函式表示式為y=ax2+bx+c(且a≠0),它的定義是一個二次多項式(或單項式)。
如果令y值等於零,則可得一個二次方程。該方程的解稱為方程的根或函式的零點。
函式性質
二次項係數a決定拋物線的開口方向和大小。當a>0時,拋物線開口向上;當a<0時,拋物線開口向下。|a|越大,則拋物線的開口越小;|a|越小,則拋物線的開口越大。
一次項係數b和二次項係數a共同決定對稱軸的位置。當a與b同號時(即ab>0),對稱軸在y軸左側;當a與b異號時(即ab<0),對稱軸在y軸右側。(可巧記為:左同右異)
常數項c決定拋物線與y軸交點。拋物線與y軸交於(0, c)
9樓:匿名使用者
先求y=1,y軸與y=x²所圍成的圖形旋轉一週得到的旋轉體體積,再利用整體圓柱的體積π減去上述體積即為所求,其中y=x²要化為x等於√y。公式如下:
v=π-∫(0,1)π(√y)²dy
=π-π/2[y²](0,1)
=π-π/2
=π/2
10樓:慕要辰星
用公式是2π∫(0,1)ydx,然後把y換成x2,或者用微元法
,按x到x+dx作為一個小微元,高近似為y,將這部分繞y軸旋轉的體積看做是一個空心的圓柱,厚度為dx,將它沿著高切開,之後為一個長寬高分別為2πx(也就是圓的周長)、y、dx的長方體,然後進行積分,也就是衍生出來的公式。
11樓:貓果
先把函式改寫成x(y)的形式,通過x和y的對應關係寫出積分割槽間,對x(y)在所求區間進行積分就可以了
vy=π∫(0,1)1²dy-π∫(0,1)(√y)²dy
12樓:
繞x軸旋轉得到的體積
vx=π∫(0到2)(x²)²dx=32π/5繞y軸旋轉得到的體積
vy=π∫(0到4)2²dy-π∫(0到4)(√y)²dy=8π
求由曲線y=x^2及x=y^2所圍圖形繞x軸旋轉一週所生成的旋轉體的體積。最好有圖形和計算的詳細過程,謝謝。 15
13樓:薔祀
解:易知圍成圖形為x定義在[0,1]上的兩條曲線分別為y=x^2及x=y^2,
旋轉體的體積為x=y^2,
繞y軸旋轉體的體積v1 減去 y=x^2繞y軸旋轉體的體積v2。
v1=π∫ydy,v2=π∫y^4dy 積分割槽間為0到1,v1-v2=3π/10.
注:函式x=f(y)繞y軸旋轉體的體積為v=π∫f(y)^2dy.
擴充套件資料:
傳統定義
一般的,在一個變化過程中,假設有兩個變數x、y,如果對於任意一個x都有唯一確定的一個y和它對應,那麼就稱x是自變數,y是x的函式。x的取值範圍叫做這個函式的定義域,相應y的取值範圍叫做函式的值域 。
近代定義
設a,b是非空的數集,如果按照某種確定的對應關係f,使對於集合a中的任意一個數x,在集合b中都有唯一確定的數 和它對應,那麼就稱對映 為從集合a到集合b的一個函式,記作 或 。
其中x叫作自變數, 叫做x的函式,集合 叫做函式的定義域,與x對應的y叫做函式值,函式值的集合 叫做函式的值域, 叫做對應法則。其中,定義域、值域和對應法則被稱為函式三要素
定義域,值域,對應法則稱為函式的三要素。一般書寫為 。若省略定義域,一般是指使函式有意義的集合 。
函式過程中的這些語句用於完成某些有意義的工作——通常是處理文字,控制輸入或計算數值。通過在程式**中引入函式名稱和所需的引數,可在該程式中執行(或稱呼叫)該函式。
類似過程,不過函式一般都有一個返回值。它們都可在自己結構裡面呼叫自己,稱為遞迴。
大多數程式語言構建函式的方法裡都含有函式關鍵字(或稱保留字)。
參考資料:
14樓:青春愛的舞姿
求曲線的y=x2的級別,以及y等於3x周圍的新藥課程旋轉一週所稱的旋轉固體的體積。
求由曲線y x 2與直線y x所圍成的圖形的面積,要具體步驟
涉及定積分 令y 有y 1 3 x 3 y x 2令z 有z 1 2 x 2 z x交點 1,1 0,0 s z 1 z 0 y 1 y 0 1 6這是標準做法。一次函式下面的面積好求,二次的只能這樣求。補充 牛頓 萊布尼茨公式 如果f x f x 那麼函式f x 在 a至b 下的面積 有正負,在上...
求由曲線y x 2及y x 3所圍成的平面圖形繞X軸旋轉所成旋轉體的體積V
是體積bai關於百x的代數du式吧?不然都是度正無窮zhi daof x 繞x旋轉的旋轉體體積為 內v x 容 f 問2 x dx 所以對於答y x 2 v x x 5 5 同理對於y x 3 v x x 7 7 對於y x n v x x 2n 1 2n 1 求曲線y x和y x 所圍成的圖形繞軸...
計算由曲線y x 2與直線y x,y 2x所圍成的平面圖形的面積
解 令x x,解得x 0或x 1 令x 2x,解得x 0或x 內2s 0 1 2x x dx 1 2 2x x dx x 2 容 0 1 x x 3 1 2 1 2 2 2 2 3 1 1 3 11 4 2 6 計算由曲線y 2 2x,y x 4所圍成的圖形的面積 先求交點,聯抄 立y 2x,y x...