1樓:匿名使用者
|ax=λ
x(λx)'λx=λ²x『x
(λx)'λx=(ax)'ax=x'a'ax=x'x所以λ²=1 λ=±1
即a的所有特徵值為1或-1
若a的所有特徵值均為1,則|專a|=λ1λ2...λn=1與|a|=-1矛盾屬
所以a至少有一個特徵值為-1
2樓:匿名使用者
由已知, |a+e| = |a+aa^t| = |a||e+a^t| = - |e+a|
所以 |a+e|=0
所以 -1 是a的特徵值
求證:若a為正交矩陣,則a的行列式的值為±1
3樓:匿名使用者
若a是正交陣,則aa^t=e兩邊取行列式得|a||a^t|=1,即|a|^2=1,所以|a|=±1。
4樓:匿名使用者
因為a為正交矩陣
所以 aa^t=e
兩邊取行列式得 |aa^t| = |e|
即有 |a||a^t| = 1
所以 |a|^2=1
所以 |a|=1 或 -1.
5樓:匿名使用者
a是正交陣,則e=aa^t,兩邊取行列式得1=|e|=|aa^t|=|a||a^t|=|a||a|=|a|^2,所以|a|=±1。
設a為正交陣,且〔a〕=-1,證明b=-1是a的特徵值 10
6樓:匿名使用者
a正交,則a的特徵值的模是1又deta=-1=所有特徵值的乘積,共軛復特徵值成對出現所以必有特徵值是-1。
設a的特徵值為λ,有aα = λα (α≠0),(a^t)a=e
等式左邊乘於a的轉置a^t,右邊乘於α ^t,得α(α ^t) = λ(a^t)α(α ^t),取行列式得:
|α(α ^t)| = λ |(a^t)| |α(α ^t)|,又|a^t|=deta=-1,故λ=-1
方陣a為正交陣的充分必要條件是a的行向量或列向量是標準正交向量。
擴充套件資料
1、正交矩陣一定是對實矩陣而言的。
2、正交矩陣不一定對稱,也不一定可以對角化。
3、正交矩陣的特徵值為正負1或者cos(t)+isin(t),換句話說特徵值的模長為1。
4、正交矩陣的行列式肯定是正負1,正1是叫第一類,負1時叫第二類。
5、對稱的正交矩陣不一定是對角的,只是滿足a'=a=a^,例如副對角線全為1,其餘元素都為零的那個方陣就是這種型別。
6、正交矩陣乘正交矩陣還是正交矩陣,但是正交矩陣相加相減不一定還是正交矩陣。
7、正交矩陣的每一個行(列)向量都是模為1的,並且任意兩個行(列)向量是正交的,即所有的行(列)向量組成r^n的一組標準正交基。
8、正交矩陣每個元素絕對值都小於等於1,如果有一個元素為1,那麼這個元素所在的行列的其餘元素一定都為零。
9、一個對稱矩陣,如果它的特徵值都為1或者-1,那麼這個矩陣一定是對稱的正交矩陣。
10、如果b是一個n維單位實列向量,則e_n-2bb'是一個對稱正交矩陣.因為e_n-2bb'的特徵值為1(n-1重),-1(1重),同時還是一個對陣矩陣。
7樓:小鑫沒了蠟筆了
先證明因為a為正交矩陣,a的特徵值為-1或1,設λ是正交矩陣a的特徵值,x是a的屬於特徵值λ的特徵向量,即有ax=入x,且x≠0.兩邊取轉置得x^ta^t=入x^t所以x^ta^tax=入^2x^tx,因為a是正交矩陣所以a^ta=e,所以x^tx=入^2x^tx,由x≠0知x^tx是一個非零的數,故入^2=1,所以入=1或-1。
因為a等於所有特徵值之積,又|a|=-1,所以必有奇數個特徵值為-1,即=-1是a的特徵值。
8樓:隰紫雲的紫竹苑
^|||a為正交陣,即a^t a=e,設a的轉置為a'
有 | e + a | = | a'a + a |= |a|| a' +e|
=-| (a + e)' |
=-| e + a |
所以 | e + a | = 0
就是說 | a - (-e)| =0
這就說明-1是他的一個特徵根
9樓:賈元牧慈
因為特徵值都大於零所以a的行列式deta=1,所以a*=deta*(a^-1)=a^-1=a^t
線性代數 設a為正交陣,且deta=-1.證明-1是a的特徵值
10樓:demon陌
a正交,則a的特徵值的模是1又deta=-1=所有特徵值的乘積,共軛復特徵值成對出現所以必有特徵值是-1。
方陣a為正交陣的充分必要條件是a的行向量或列向量是標準正交向量。
正交矩陣不一定是實矩陣。實正交矩陣(即該正交矩陣中所有元都是實數)可以看做是一種特殊的酉矩陣,但也存在一種復正交矩陣,這種復正交矩陣不是酉矩陣。
若是的屬於的特徵向量,則也是對應於的特徵向量,因而特徵向量不能由特徵值惟一確定.反之,不同特徵值對應的特徵向量不會相等,亦即一個特徵向量只能屬於一個特徵值。
11樓:流雲
^^設a的特徵值為λ,有aα = λα (α≠0),(a^t)a=e等式左邊乘於a的轉置a^t,右邊乘於α ^t,得α(α ^t) = λ(a^t)α(α ^t),取行列式得:
|α(α ^t)| = λ |(a^t)| |α(α ^t)|,又|a^t|=deta=-1,故λ=-1
即:題幹條件下,a的特徵值有且僅有-1
12樓:幽谷之草
正交矩陣的特徵值只能是1或者-1;
矩陣a的行列式值|a|是a的特徵值的乘積。
根據以上兩點正交矩陣的特徵值的乘積是-1,所以不能全部都是1,從而-1是a的特徵值。
請問設a是正交矩陣,|a|=1,證明1一定是a的特徵值嗎?還有可能有特徵值1和共軛虛數嗎??
13樓:光孤子
帶入驗證來
。因為det(
源i-a)=det((a(at))-a)=det(a(at-i))=det(at-i)=det(a-i)=-det(i-a)(說明at表示a的轉置),所以det(i-a)=0,所以1是特徵值。因為正交矩陣一定是實矩陣(定義),所以其特徵值只能是實數。
求證若a為正交矩陣則a的行列式的值為
若a是正交陣,則aa t e兩邊取行列式得 a a t 1,即 a 2 1,所以 a 1。因為a為正交矩陣 所以aa t e 兩邊取行列式得 aa t e 即有 a a t 1 所以 a 2 1 所以 a 1 或 1.線性代數 設a為正交陣,且deta 1.證明 1是a的特徵值 a正交,則a的特徵值...
求矩陣的行列式detA,矩陣行列式,A是nn的行列式,detdetA為什麼等於detAn?
a2016 7 a2015 10 a2014 按r1 a2016 2 a2015 5 a2015 2 a2014 遞推 5 2014 a2 2 a1 5 2014 7,2 5,7 2 7 5 2016 a2016 2 a2015 5 2016遞推 5 2016 2 5 2015 2 2 5 2014...
A行列式為0,證明伴隨矩陣行列式也為
用反證法。假設 a 0,則a 可逆。由 aa a e 0 等式兩邊右乘 a 的逆矩陣。得 a 0.所以 a 0 所以 a 0.這與假設矛盾。故 當 a 0時,a 0.當a的行列式等於零時,a的伴隨矩陣的行列式等於零怎麼證明 可以利用 a a 得出 a 0。假定a的階數n 2 如果rank a n 1...