設zf2xygx,xy,其中f具有二階導數,g

2021-03-19 18:24:26 字數 1730 閱讀 5608

1樓:匿名使用者

dz/dx(用d表示偏導符號)=f'(2x-y)*2+g'1(x,xy)*1+g'2(x,xy)*y=2f'(2x-y)+g'1(x,xy)+y*g'2(x,xy)=2f'(2x-y)+g'1+yg'2(簡單記法,g'1表示g對第一個變數的偏導數,g'2表示g對第二個變數的偏導數)

則d(dz/dx)/dy=-2f''(2x-y)+g''11*1+g''12*y+y*(g''21+g''22*y)=-2f''(2x-y+g''11+y*g''12+y*g''21+y^2*g''22

(g''12表示g先關於第一個變數求偏導,再對第二個變數求偏導,其它的類似)

實屬**

設z=f(2x-y)+g(x,xy),其中函式f二階可導,g具有二階連續偏導數,求a^2z/axay (a就是那個偏導符號)

2樓:匿名使用者

dz/dx(用d表示偏導符號)=f'(2x-y)*2+g'1(x,xy)*1+g'2(x,xy)*y=2f'(2x-y)+g'1(x,xy)+y*g'2(x,xy)=2f'(2x-y)+g'1+yg'2(簡單記法,g'1表示g對第一個變數的偏導數,g'2表示g對第二個變數的偏導數)

則d(dz/dx)/dy=-2f''(2x-y)+g''11*1+g''12*y+y*(g''21+g''22*y)=-2f''(2x-y+g''11+y*g''12+y*g''21+y^2*g''22

(g''12表示g先關於第一個變數求偏導,再對第二個變數求偏導,其它的類似)

設z=f(2x-y)+g(x,xy),其中函式f二階可導,g具有二階連續偏導數,求zxy

3樓:匿名使用者

dz/dx = 2f'+g1+yg2,

ddz/dxdy = -2f"+yg12+y^2*g22.

設z=f(2x-y)+g(x,xy),其中函式f(t)二階可導,g(u,v)具有連續二階偏導數,求?2z?x?y

4樓:小鉡

因為:z=f(2x-y)+g(x,xy)

所以:?z

?x=?

?x[f(2x-y)+g(x,xy)]

=??x

f(2x-y)+?

?xg(x,xy)

=f′?

?x(2x-y)+g1′?

?x(x)+g2′?

?x(xy)

=2f′+g1′+yg2′?z

?x?y

=??y

(2f′+g1′+yg2′)

=2??y

f′+?

?yg1′+?

?y(yg2′)

因為:2?

?yf′=2f″?

?y(2x-y)=-2f″;??y

g1′=g11″?

?y(x)+g12″?

?y(xy)=xg12″;??y

(yg2′)=g2′+y?

?yg2′

=g2′+yg21″?

?y(x)+yg22″?

?y(xy)

=g2′+xyg22″

所以:?

z?x?y

=2??y

f′+?

?yg1′+?

?y(yg2′)

=-2f″+xg12″+g2′+xyg22″故?z?x?y

的值為:

-2f″+xg12″+g2′+xyg22″

設函式z f xy,yg x其中函式f具有二階連續偏導數,函式g x 可導且在x 1處取得極值g

其實就是複合函式求導。這個題是乘積求導,也就是 左導右不導,左不導右導 他只是把偏導符號簡寫成了帶下標的f,只是為了簡潔而已,意思還是那樣。答案是a 2z axay y f xy g x y yg x y 其中f 表示對函式f求二階導數,不是二階偏導,其餘類似理解 設z f xy,yg x 其中函式...

設函式f具有二階連續的偏導數,u f(xy,x y),求

由u f baixy,x y 兩邊對x求偏導,得du?u?x yf f zhi?u x?y y yf f f 1 y daoxf 11 f 12 xf 21 f 22 而函式版f具有二階連續的權偏導數,即f 12 f 21 u?x?y f 1 xyf 11 x y f 12 xf 22 設z xf ...

設函式f(x)具有連續的二階導數,且f 0 0,limfxx 1,則f 0 是f x 的極小值

imf x x 1表明x 0附近 即某鄰域 f x x 0,f x 0,f x 遞增,x 0,f x 0,f x f 0 0,所f 0 極值。極值是一個函式的極大值或極小值。如果一個函式在一點的一個鄰域內處處都有確定的值,而以該點處的值為最大 小 這函式在該點處的值就是一個極大 小 值。如果它比鄰域...