1樓:西域牛仔王
設 t=√(4-x^2)>=0 ,則 -2<=x<=2 ,因此 y=x+t>= -2 ,①
由 x^2+t^2=4 得 x^2+(y-x)^2=4 ,即 2x^2-2yx+y^2-4=0 ,
判別式=(-2y)^2-8(y^2-4)>=0 ,解得 -2√2<=y<=2√2 ,②
因此值域為 [-2,2√2] 。
2樓:丙星晴
y=x+√(4-x)
設 √(4-x)=t>=0
4-x=t^2
x=4-t^2
y=4-t^2+t,(t>=0)
=-(t^2-t+1/4)+17/4
=-(t-1/2)^2+17/4
當t=1/2,y(max)=17/4
沒有最小值
y<=17/4
所以所求的值域是:
(-00,17/4]
3樓:匿名使用者
y=x+根號下(2+x)*(2-x)
不管虛數什麼的,則(2+x)*(2-x)≥0,故-2≤x≤2再分析 y在[-2,0)區域為增函式,在[0,根號下2]區域為增函式,在(根號下2,2]區域為減函式
可得出-2≤y≤2*根號下2
4樓:匿名使用者
y=x+根號下4-x^2 兩邊平方
y²=4+2x根號下4-x^2
y²=4+2根號下 4x²-x⁴
把x²看成t
根號下是個二次函式,有最大值
t∈[-2,2]
所以t∈[0,4]
根號裡面的二次函式範圍是[0,4]
∴y∈[4,8]
5樓:匿名使用者
這個兩邊平方就可以了,y^2=4+2x根號下4-x^2, 2x根號下4-x^2小於等於4(這個利用2ab小於等於a方+b方)
6樓:姍姍快回家
x取值範圍是-2到2,代進入,因此y的取值也是-2到2.
y=x+√1-x²的值域三角函式法
7樓:匿名使用者
令x=sinθ,θ∈[-π/2,π/2]
y=x+√(1-x²)
=sinθ+√(1-sin²θ)
=sinθ+cosθ
=√2sin(θ+ π/4)
θ∈[-π/2,π/2],則-π/4≤θ+ π/4≤3π/4-√2/2≤sin(θ+ π/4)≤1
-1≤√2sin(θ+ π/4)≤√2
函式的值域為[-1,√2]
三角函式求值域問題 f(x)=sinx/√(5+4cosx)(0<x<2π)的值域為
8樓:廬陽高中夏育傳
f(x)是週期為2π的奇函式,只要求出[-π,π]上的值域就是[0,2π]上的值域;
當,0≤x≤π時,
f(x)≥0
f(x)=√[sin^2(x)/(5+4cosx)]=√[(1+cosx)(1-cosx)/(5+4cosx)]
令t=5+4cosx
1≤t≤9 ,且cosx=(t-5)/4
(1+cosx)=(t-1)/4
(1-cosx)= - (t-9)/4
y=(1/4)√-(t-9)(t-1)/t=(1/4)√(-t^2+10t-9)/t
y=(1/4)√[-t-(9/t)+10]因為t+(9/t)≥6,所以,
-t-(9/t)≤-6(t=3時取等號)
y(max)=(1/4)√4=(1/2)
0≤y≤(1/2)
當-π≤x<0時,
0<(-x)≤π
由上式得:
0 0<-f(x)≤(1/2) -1/2≤f(x)<0 把兩個值域並起來為: -1/2≤f(x)≤1/2 所以原函式的值域為:[-1/2,1/2] 求三角函式y=sin(x+1/2)^2+1的值域 9樓:淚笑 ∵-1≤sin(x+1/2)≤1 ∴0≤sin(x+1/2)^2≤1 ∴1≤sin(x+1/2)^2+1≤2 ∴y=sin(x+1/2)^2+1的值域是[1,2]這是我在靜心思考後得出的結論, 如果能幫助到您,希望您不吝賜我一採納~(滿意回答)如果不能請追問,我會盡全力幫您解決的~ 答題不易,如果您有所不滿願意,請諒解~ 10樓:真de無上 y=sin(x+1/2)^2+1 y=1-cos(x+1/2)^2+1 y=1-(1+cos(2x+1))/2+1y=3/2-cos(2x+1)/2 [1/2,5/2] 11樓: sin(x+1/2)的值域是[-1,1] sin(x+1/2)^2的值域是[0,1] y=sin(x+1/2)^2+1的值域[1,2] 12樓:by沉魚 sin最大值是1最小值是-1 後面因為要+2所以值域是0到2 三角函式定義域值域怎麼求的? 13樓:匿名使用者 一般來來 說 sinx cosx 的值域為r,tanx為 x不等於2kπ自+π/2. 其中k為整數,複合函式將三角函式後的函式看做x即可,值域的話,沒有特殊說明sinx cosx 是[-1,1] tanx是r,有定義域的話,結合影象,複合函式的話,應將三角函式裡的一元函式的值域看成其定義域 三角函式值域問題 14樓:我不是他舅 1+sin(a)=1+[2tan(a/2)]/[1+tan^2(a/2)] =[1+tan^2(a/2)+2tan(a/2)]/[1+tan^2(a/2)] =[1+tan(a/2)]^2/[1+tan^2(a/2)]1-cos(a)=1-[1-tan^2(a/2)]/[1+tan^2(a/2)] =2tan^2(a/2)/[1+tan^2(a/2)]y=(1+sin(a))/(1-cos(a))=[1+tan(a/2)]^2/2tan^2(a/2)因為tan(a/2)的值域是r 所以令x=tan(a/2) y=(1+x)^2/2x^2 (1-2y)x^2+2x+1=0 x是實數所以△≥0 4-4(1-2y)≥0y≥0 15樓:匿名使用者 樓上的有些麻煩,用數形結合的方法就比較簡單。這個題目可以這樣解,f(a)=(1+sin(a))/(1-cos(a)),可以這麼看,我們令 y1=sin(a),y2=-1; x1=-cos(a),x2=-1. 則:y=(y1-y2)/(x1-x2). 這個就是斜率,是通過a(-cos(a),sin(a))和b(-1,-1)這兩個點的直線的斜率。對於a來說,它是一個動點,它的軌跡是一個圓心在原點,半徑為1的圓。所以所求的值域就是通過圓上一點和定點(-1,-1)的直線的斜率的範圍,明顯的,當相切的時候就是範圍了。 見圖 很明顯的,斜率是在0到正無窮大變化,所以值域就是y>=0 16樓:仙修明 1-cos(a)≠0 → cos(a)≠1 → a≠2k∏,(k=1,2,3,……) y=(1+sin(a))/(1-cos(a))=[sin^2(a/2)+cos^2(a/2)+2sin(a/2)cos(a/2)]/[1-cos^2(a/2)+sin^2(a/2)] =[sin(a/2)+cos(a/2)]^2/2sin^2(a/2)=1/2*^2 =1/2*[1+cot(a/2)]^2 17樓:溡緔di孑 我教你個方法,比較簡單,把1都換成a/2的正弦和餘弦的平方和,把a換成a/2,過程: 原式=<(sin0.5a)^2+(cos0.5)^2+2sin0.5acos0.5a>/2(sin0.5a)^2 =<(sin0.5a+cos0.5a)^2>/2(sin0.5a)^2 把(sin0.5a+cos0.5a)/根號2sin0.5a的取值範圍求出來就ok了,根據我的步驟在紙上寫很簡單. 回答完畢,謝謝! 18樓:天天愛毛豆 用萬能公式啊!全部換成tan(a/2) 令x 2sin dx 2cos d x 4 x dx 4sin 4 4sin 2cos d 4sin 2cos 2cos d 4 sin d 2 1 cos2 d 2 2 1 2 sin2 c 2 2sin cos c 2arcsin x 2 2 x 2 4 x 2 c 2arcsin x 2 x ... 根號下 3 x 最大值為2,此時根號下 x 1 取最小值0,x 1,所以y最大值為2 根號下 3 x 最小值為0,此時根號下 x 1 取最大值2,x 3,所以y最小值為 2 2 y 2 y 根號下 1 x 根號下 x 3 的值域?定義域 3 x 1 y 根號下 1 x 根號下 x 3 兩邊都為正,平... 求函式baiy x 2 x 3 的值域 解 定義du域 x 2.令y x 3 2 zhi x 2 x 2 x 3 x 3 2 x 2 x 3 x 2 x 1 x 3 x 2 0 得駐點daox 1,當 2 x 1時,y 0 當x 1時,y 0 故 回x 1是極大答點,極大值 y 1 1 2 y 2 ...x2根號下4x2的不定積分
求下列函式的值域y根號下3x根號下x
求函式y根號下(x 2x 3)的值域要過程謝謝