線性代數什麼時候把行列式化成行階梯形,什麼時候化成行最簡形呢

2021-04-20 15:30:23 字數 3934 閱讀 3603

1樓:匿名使用者

是矩陣,不是行列式。(1)求秩時只需化為行階梯形。

(2)其它的(如求方程組的解)則需化為行最簡形。

2樓:匿名使用者

如果求秩,只要化為階梯型即可;

如果是求方程的解,求逆,求矩陣方程等,要化為最簡形

線性代數中,什麼時候把矩陣化成行階梯形,什麼時候化成行最簡形? 10

3樓:蠻明朗鄺月

在判斷方程組是否有解是時可以化成階梯型看秩是否相等,而解方程的時候則化成行最簡比較方便*^_^*題主加油~如果覺得有用請採納謝謝*^_^*

4樓:匿名使用者

是矩陣,不是行列式.(1)求秩時只需化為行階梯形.

(2)其它的(如求方程組的解)則需化為行最簡形.

線性代數中矩陣初等行變換時什麼時候應化為階梯形,什麼時候化為最簡形,什麼時候化為單位矩陣?

5樓:匿名使用者

1. 化為階梯形

bai:

判斷方程

du組的解的存在性

求向量zhi組的極大無dao關組

2. 化最簡形:

方程組有解回時, 求出方答程組的全部解

求出向量組的極大無關組, 且要求將其餘向量由極大無關組線性表示3. 化單位矩陣

解矩陣方程 ax=b 時, 需把 (a,b) 的左塊化成單位矩陣.

暫時想到這些

**性代數中,什麼時候把矩陣化成行階梯型,什麼時候化成行最簡型??急急急

6樓:是你找到了我

1、如果只要求矩陣的秩,包括判斷非齊次線性方程組是否有解,化為階梯型即可。

2、如果想求線性方程組的解,特別是基礎解系,則一般應化為最簡型。

階梯型矩陣是矩陣的一種型別。他的基本特徵是如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。階梯型矩陣的基本特徵:

如果所給矩陣為階梯型矩陣則矩陣中每一行的第一個不為零的元素的左邊及其所在列以下全為零。

7樓:哥特式死亡幻境

在判斷方程組是否有解是時可以化成階梯型看秩是否相等,而解方程的時候則化成行最簡比較方便*^_^*題主加油~如果覺得有用請採納謝謝*^_^*

8樓:匿名使用者

過去手工計算,對增廣矩陣實施初等行變換,如果僅求係數矩陣及增廣矩陣的秩,只要化為【行階梯矩陣】即可;如果要求方程組的解,可進一步化為【行最簡矩陣】。如今計算機軟體算,統一化為【行最簡矩陣】。因為行最簡矩陣性質包含了行階梯矩陣的性質。

9樓:匿名使用者

是矩陣,不是行列式.(1)求秩時只需化為行階梯形.

(2)其它的(如求方程組的解)則需化為行最簡形.

線性代數中矩陣初等行變換時什麼時候應化為階梯形,什麼時候化為最簡形矩陣? 什麼是標準型?

10樓:匿名使用者

矩陣為了求逆矩陣需要化為最簡形矩陣,例如(a,e)=(e,a-1)等。階梯形一般是為了求矩陣的秩。

矩陣的標準形一般有3種:

1.梯矩陣

2.行簡化梯矩陣(或稱為行最簡形)

3.等價標準形

線性代數 把矩陣化為行最簡形矩陣的方法

11樓:匿名使用者

化成下三角的技巧主要就是「從左至右,從下至上」,找看起來最容易一整行都化為0或者儘可能都化為0的一行(一般是最下面一行),將其放至最後一行,然後通過初等變換將這一行的元素從左至右依次設法都變成0直至無法再化為0為止。

接著從這一行的上一行開始依次從左至右化為0,不停重複直至處理完第一行。最後要檢查首非零元是否從最後一行開始依次往左移,如不是,要換行調整到是為止。例:

2341。

0123。

0001。

這樣就算完成了第一步。接著保證首非零元都是1,並且保證首非零元所在「列」都為0即可,本例可處理為:

1 0 -1 0。

0 1 2 0。

0 0 0 1。

12樓:匿名使用者

把矩陣化為行最簡形矩陣的方法是指對矩陣做初等的行變換,將矩陣化為階梯形。

化簡矩陣的目的是找到一個和原矩陣等價的,形式比較簡單的矩陣,如上三角形,下三角形等。原矩陣和化簡後的矩陣等價是指它們可以互相表出。

化簡的方法主要有:

1.某一行乘以一個非零的常數與另外一個行進行線性運算;

2.交換任意兩行的位置;

注意:化簡矩陣具有靈活性,不同的人化簡的結果也不同,但必須遵守兩個原則:

1.儘量使矩陣的形式簡單,一般化為上三角形;

2.保持矩陣的等價性不變。

13樓:匿名使用者

逐行從前往後化簡 。

急急急!(線性代數)如何把行階梯型矩陣化為行最簡形?我知道什麼是最簡形但是找不到方法化,求助!

14樓:fly灬風

額,一般是找到開頭數字為1或可化為1的那一行作為第一行,剩下三行和第一行加減化為0 x x x形式,然後把其中兩行化為0 0 x x形式 ,然後 把這兩行相加減,一般求最簡形的話肯定有一行會化為 0 0 0 0 形式的,然後把順序排好x x x x ···· ······0 x x x ···· 0 0 x x ···· 0 0 0 0(x可為0)

15樓:洛伊小可愛

把第二行乘以-1,後邊就都好化了,化出來答案是正確的1 0 -1 0 4

0 1 -1 0 3

0 0 0 1 -3

0 0 0 0 0

最後應該這樣吧,我的步驟是,第一行加第二行;第一行加二倍第三行,第二行加三倍第三行。

x1=4+x3

x2=3+x3

x3=x3

x4=-3(令x3=c)

16樓:舜儀岑芳洲

a=2-1-11

211-2

144-6

2-243

6-979

=11-2

142-1

-1124

-62-24

36-97

9=11

-2140

-33-1-6

0-10

10-6

-1203-3

4-3=1

1-214

0-33-1

-60-11

-3600

03-9=

11-21

40-11

-360-3

3-1-60

003-9

=11-2

140-1

1-360

008-2400

03-9=

11-21

40-11

-3600

0-130

003-9

=11-2

140-1

1-360

00-13

0000

0=11

-2140

1-13-6

0001

-300000

將下列矩陣先化為行階梯形矩陣,再化為行最簡形矩陣,最後化為標準形並指出哪個對應哪個?

17樓:匿名使用者

行階梯形矩陣

行最簡形矩陣

同時行最簡形矩陣也是標準形矩陣。

求矩陣的特徵向量的時候,將特徵值代入求解,需要把矩陣化成行最簡形嗎?還是行階梯就可以?

18樓:賀零傾飣劍戈弚

最好化成行最簡形,因為你寫特徵向量的時候,就不用化簡了,不然,需要稍微化簡一下。

線性代數行列式題目,線性代數行列式題目!

由各系數和常數可以知道 相關的行列式都是 範德蒙型 所以 d an a n 1 an a1 a2 a1 an到a1所有可能的差 dx1 d中所有a1換成b dxn d中所有an換成b x1 dx1 d an b a2 b an a1 a2 a1 ai b ai a1 i 2 to n x2 dx2 ...

線性代數的行列式值怎麼求,線性代數求行列式的值

分析 這是一道考察矩陣a,當秩r a 1時,a的性質特點。當秩r a 1時,a可分解為兩個矩陣的乘積,即a a1 a2 a3 t b1 b2 b3 有a n k n 1a k a1b1 a2b2 a3b3 矩陣a的特徵值之和等於a主對角線元素之和 解答 a t,則r a 1 則線性代數的行列式值怎麼...

線性代數行列式證明題,大一線性代數行列式證明題

解 將d按第一列分拆 d d1 d2 a 2 a a 1 1 a 2 a a 1 1 b 2 b b 1 1 b 2 b b 1 1 c 2 c c 1 1 c 2 c c 1 1 d 2 d d 1 1 d 2 d d 1 1 第一個行列式d1的第1,2,3,4各行分別乘a,b,c,d,因為 ab...