怎麼簡單的判斷多元函式的連續性,偏導數存不存在,和可不可微

2021-05-16 20:37:33 字數 3222 閱讀 4021

1樓:匿名使用者

多元函式關於在x0處的偏導數存在的充要條件就是

(t趨於0)lim [f(x0+t)-f(x0)]/t存在,對於其他的自變數也是一樣的道理

多元函式可偏導與連續是非必要亦非充分關係

如何證明多元函式連續、偏導存在和可微?求例項

2樓:6清風與歸

如討論抄2元函式f(x,y)在(x1,y1),偏導存bai在du的條件:x的偏導存在,zhiy的偏導存在。(用定義求,課本上dao有詳細求法)。

連續性只要看該函式趨於點(x1,y1)的極限指是否等於f(x1,y1)。可微有兩種方法,一是證明了該函式在點(x1,y1)處的偏導連續。二是用定義法,定義法結果趨於0則不可微。

明天給你穿一個例項,現在不方便找。

多元函式的連續、偏導存在存在和可微之間有什麼關係

3樓:匿名使用者

二元函式連續抄、偏導數存襲在、可微之間的bai關係1、若二元函式f在其定du義域內某

點可微zhi,則二元函式f在該點偏導數存在,反過來則不一定成立。

2、若二元函式函式f在其定義域內的某點可微,則二元函式f在該點連續,反過來則不一定成立。

3、二元函式f在其定義域內某點是否連續與偏導數是否存在無關。

4、可微的充要條件:函式的偏導數在dao某點的某鄰域記憶體在且連續,則二元函式f在該點可微。

上面的4個結論在多元函式中也成立

4樓:死神vs火影

偏導數連續是可微的充分不必要條件

高數問題:一個多元函式連續,偏導數存在,且偏導數不連續,為什麼不能說明函式不可微?

5樓:匿名使用者

舉個例子就夠了,如下這個函式滿足你的條件:

多元函式,偏導數存在,偏導數連續,可微這三者什麼關係? 或者可微與偏導數連續的聯絡怎麼解釋證明?

6樓:多元函式偏導

首先先把結論告訴你,偏導數存在是一個很強的條件,既

可以推出可微也可以推出偏導數存在。然後可微偏導數一定存在,反之不成立。你的那個例子就是一個反例。具體的我們只需要證明可微偏導數存在和偏導數連續則可微就行。

多元函式的連續,可微的定義,以及連續,偏導,可微之間的關係

7樓:匿名使用者

多元函式性質之間的關係問題

多元函式這些性質之間的關係是:可微分是最強 的性質,即可微必然可以推出偏導數存在,必然可以推出連續。反之偏導數存在與連續之間是不能相互推出的(沒有直接關係),即連續多元函式偏導數可以不存在;偏導數都存在多元函式也可以不連續。

偏導數連續強於函式可微分,是可微分的充分不必要條件,相關例子可以在數學分析書籍中找到。

其中可微分的定義是:

以二元函式為例(n元類似)

擴充套件:可微分可以直觀地理解為用線性函式逼近函式時的情況(一元函式用一次函式即切線替代函式增量,二元函式可以看做是用平面來代替,更多元可以看做是超平面來的代替函式增量,當點p距離定點p0的距離p趨於零時,函式增量與線性函式增量的差是自變數與定點差的高階無窮小(函式增量差距縮小的速度快與自變數p靠近p0的速度))。

8樓:匿名使用者

1、如果二元函式f在其域中的某個點處是可分的,則二元函式f存在於該點的偏導數處,而該函式不一定成立。

2、如果二進位制函式f在其域中的某個點處是可分的,則二進位制函式f在該點處是連續的,反之亦然。

3、二元函式f是否在其域中的某個點處是連續的,與偏導數的存在無關。

4、可區分和充分條件:函式的偏導數存在並且在某一點的某個鄰域中是連續的,並且此時二元函式f是可分的。

設d為一個非空的n 元有序陣列的集合, f為某一確定的對應規則。若對於每一個有序陣列 ( x1,x2,…,xn)∈d,通過對應規則f,都有唯一確定的實數y與之對應,則稱對應規則f為定義在d上的n元函式。

記為y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈d。 變數x1,x2,…,xn稱為自變數,y稱為因變數。

當n=1時,為一元函式,記為y=f(x),x∈d,當n=2時,為二元函式,記為z=f(x,y),(x,y)∈d。二元及以上的函式統稱為多元函式。

9樓:匿名使用者

多元函式連續、偏導數存在、可微之間的關係一般有:

1、若多元函式f在其定義域內某點可微,則多元函式f在該點偏導數存在,反過來則不一定成立。

2、若多元函式函式f在其定義域內的某點可微,則多元函式f在該點連續,反過來則不一定成立。

3、多元函式f在其定義域內某點是否連續與偏導數是否存在無關。

4、可微的充要條件:函式的偏導數在某點的某鄰域記憶體在且連續,則多元函式f在該點可微。祝好。

多元函式不可微則函式的偏導數一定不存在對嗎

10樓:

對於一元函式來說,可導和可微是等價的,而對多元函式來說,偏導數都存在,也保證不了可微性,這是因為偏導數僅僅是在特定方向上的函式變化率,它對函式在某一點附近的變化情況的描述是極不完整的.

1,偏導數存在且連續,則函式必可微!

2,可微必可導!

3,偏導存在與連續不存在任何關係

其幾何意義是:z=f(x,y)在點(x0,y0)的全微分在幾何上表示曲面在點(x0,y0,f(x0,y0))處切平面上點的豎座標的增量。

為什麼偏導數存在不一定可微?

11樓:左岸居東

對於一元函式來說

,可導和可微是等價的,而對多元函式來說,偏導數都存在,也保證不了可微性,這是因為偏導數僅僅是在特定方向上的函式變化率,它對函式在某一點附近的變化情況的描述是極不完整的.

1,偏導數存在且連續,則函式必可微!

2,可微必可導!

3,偏導存在與連續不存在任何關係

其幾何意義是:z=f(x,y)在點(x0,y0)的全微分在幾何上表示曲面在點(x0,y0,f(x0,y0))處切平面上點的豎座標的增量。

如何判斷一個二元函式在某點可微?(我知道是偏導數連續,但做題不是用這種方法,好像是一個極限等於零)

12樓:j水瓶射手座

應該是該點處函式值的增量-在x方向偏導數乘以x的增量-在y方向偏導數乘以y的增量,在x,y兩方向增量均趨近於0時,極限是(x^2+y^2)^1/2的高階無窮小(即二者比值為0)

利用函式連續性求函式極限,利用函式的連續性怎麼求極限

函式連續性的定義就是用極限定義的,而初等函式的連續性求初等函式的極限就用直接用了定義。而定義是人為,只要這種定義符合實踐就行,不出現矛盾情況就可。你可以將貓定義成狗,或狗定義成貓。關鍵要得得到大多數人人承認。函式f x 在x0處連續,一個是該處有極限,一個是該極限等於該點的函式值.付費內容限時免費檢...

高數連續怎麼理解,高數中函式的連續性有什麼用

你所謂的兩 bai種方法其實是一du樣的,你說的第二種判zhi定方法中,要求 函 dao數在該點極限存版在 那麼權要怎麼保證函式在該點極限存在呢?要求就是函式在該點的左右極限都存在且相等,這就和你說的第一種方法相同了。對於平時求函式極限時,我們有時不驗證左右極限是否相等,例如f x x在x 1處的極...

一道關於函式連續的題 。。。求解一道函式連續性的題

x趨於1時,limf x x 3 kx 1 x 2 1 要使極限存在,需分子趨於,所以k 2 limf x x 3 2x 1 x 2 1 lim 3x 2 2 2x 1 2l 1 2 x趨向於1時,x2 1 0 則x3 kx 1 0 x 1 得k 2羅比達法則 3x2 2 2x l k 2 函式在一...