1樓:匿名使用者
高等數學下冊二重積。
這個題,可以利用第一類曲面積分的對稱性,
由於被積函式關於z是奇函式,曲面關於xoy面對稱,所以,這個曲面積分值等於0。
原式=0。
2樓:匿名使用者
∑分為上球面∑1和下球面∑2,∑1和∑2在xy平面投影都為σxy:x²+y²≤r²
∑1:z=(r²-x²-y²)½ 法向量與z軸正向夾角γ1∑2:z=-(r²-x²-y²)½ 法向量與z軸正向夾角γ2|cosγ1|=|cosγ2|
∫∫∑ x²y²zds
=∫∫∑1 x²y²zds1+∫∫∑2 x²y²zds2=∫∫σxy x²y²(r²-x²-y²)½dσ/|cosγ1|+∫∫σxy x²y²[-(r²-x²-y²)½]dσ/|cosγ2|=0
求e^(x+y)的二重積分,其中d是閉區域|x|+|y|<=1 高數課本上的題目,答案是e-
3樓:116貝貝愛
解題過程如下:
求二重積分方法:
二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。
平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。
在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知。
二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。
當f(x,y)在區域d上可積時,其積分值與分割方法無關,可選用平行於座標軸的兩組直線來分割d,這時每個小區域的面積δσ=δx·δy,因此在直角座標系下,面積元素dσ=dxdy。
在極座標系下計算二重積分,需將被積函式f(x,y),積分割槽域d以及面積元素dσ都用極座標表示。函式f(x,y)的極座標形式為f(rcosθ,rsinθ)。
為得到極座標下的面積元素dσ的轉換,用座標曲線網去分割d,即用以r=a,即o為圓心r為半徑的圓和以θ=b,o為起點的射線去無窮分割d,設δσ就是r到r+dr和從θ到θ+dθ的小區域。
4樓:violette海王心
前面文字敘述全是思路,這題就不該按原來給的座標系來,那個計算太繁瑣了,我這個也是用了二重積分的思想,前面全是腦子裡的思考和想象,最後三行才是計算量
高等數學計算二重積分,高等數學二重積分
積分割槽域被直線 x y 2 劃分為兩塊,d1 0 回y 4,y x 2 y,d2 4 x 2,2 x y x,因此原式 答 0,4 dy y,2 y cos x y dx 4,2 dx 2 x,x cos x y dy 0,4 1 cos2y dy 4,2 cos2x 1 dx 0,2 1 cos...
積分中值定理的幾何意義,高等數學二重積分中值定理和中值到底有什麼關係?還有老師講幾何意義時畫了個圖,說交線上的點
這個定理的幾何意義為 若,則由軸 及曲線圍成的曲邊梯形的面積等於一個長為,寬為的矩形的面積。意義就是 區間 a,b 上定義的被積函式y f x 的影象與ox軸以及x a和x b所圍成的曲邊梯形的面積等於直線y f x 0 ox軸以及x a和x b所圍成的矩形的面積。高等數學 二重積分中值定理 和 中...
高等數學二重積分xy的範圍確定之後,被積函式放在dx前面還是
積分割槽域為矩形區域 a x b,c y d 被積函式為f x g y 則二重積分等於 a b f x dx c d g y dy 二重積分裡 被積函式是不是放在dx或者dy部分都可以?計算結果都一樣嗎?我是這樣想的 如果dx部分和dy部分的積分上下限都是常數的時候被積函式放哪都一樣,如果是換序問題...