1樓:分公司前
二重積分:有兩個自變數z = f(x,y)
當被積函式為1時,就是面積(自由度較大)
∫(a→b) ∫(c→d) dxdy = a(平面面積)
當被積函式不為1時,就是圖形的體積(規則)、和旋轉體體積
∫(a→b) ∫(c→d) dxdy = v(旋轉體體積)
計算方法有直角座標法、極座標法、雅可比換元法等
極座標變換:{ x = rcosθ
{ y = rsinθ
{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π
∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ
三重積分:有三個自變數u = f(x,y,z)
被積函式為1時,就是體積、旋轉體體積(自由度最大)
∫(a→b) ∫(c→d) ∫(e→f) dxdydz = v(旋轉體體積)
當被積函式不為1時,就沒有幾何意義了,有物理意義等
計算方法有直角座標法、柱座標切片法、柱座標投影法、球面座標法、雅可比換元法等
極座標變化(柱座標):{ x = rcosθ
{ y = rsinθ
{ z = z
{ h ≤ r ≤ k
{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π
∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ
極座標變化(球座標):{ x = rsinφcosθ
{ y = rsinφsinθ
{ z = rcosφ
{ h ≤ r ≤ k
{ a ≤ φ ≤ b、最大範圍:0 ≤ φ ≤ π
{ α ≤ θ ≤ β、最大範圍:0 ≤ θ ≤ 2π
∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ
所以越上一級,能求得的空間範圍也越自由,越廣泛,但也越複雜,越棘手,而
且限制比上面兩個都少,對空間想象力提高了.
重積分能化為幾次定積分,每個定積分能控制不同的伸展方向.
又比如說,在a ≤ x ≤ b裡由f(x)和g(x)圍成的面積,其中f(x) > g(x)
用定積分求的面積公式是∫(a→b) [f(x) - g(x)] dx
但是升級的二重積分,面積公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被積函式變為1了
用不同積分層次計算由z = x² + y²、z = a²圍成的體積?
一重積分(定積分):向zox面投影,得z = x²、令z = a² --> x = ± a、採用圓殼法
v = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2
二重積分:高為a、將z = x² + y²向xoy面投影得x² + y² = a²
所以就是求∫∫(d) (x² + y²) dxdy、其中d是x² + y² = a²
v = ∫∫(d) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、這步你會發覺步驟跟一重定積分一樣的
= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2
三重積分:旋轉體體積,被積函式是1,直接求可以了
柱座標切片法:dz:x² + y² = z
v = ∫∫∫(ω) dxdydz
= ∫(0→a²) dz ∫∫dz dxdy
= ∫(0→a²) πz dz
= π • [ z²/2 ] |(0→a²)
= πa⁴/2
柱座標投影法:dxy:x² + y² = a²
v = ∫∫∫(ω) dxdydz
= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz
= 2π • ∫(0→a) r • (a² - r²) dr
= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)
= 2π • [ a⁴/2 - (1/4)a⁴ ]
= πa⁴/2
三重積分求體積時能用的方法較多,就是所說的高自由度.
既然都說了這麼多,再說一點吧:
如果再學下去的話,你會發現求(平面)面積、體積 比 求(曲面)面積的公式容易
學完求體積的公式,就會有求曲面的公式
就是「曲線積分」和「曲面積分」,又分「第一類」和「第二類」
當被積函式為1時,第一類曲線積分就是求弧線的長度,對比定積分只能求直線長度
∫(c) ds = l(曲線長度)
被積函式不為1時,就是求以弧線為底線的曲面的面積
∫(c) f(x,y) ds = a(曲面面積)
當被積函式為1時,第一類曲面積分就是求曲面的面積,對比二重積分只能求平面面積
∫∫(σ) ds = a(曲面面積)、自由度比第一類曲線積分大
∫∫(σ) f(x,y,z) ds,物理應用、例如曲面的質量、重心、轉動慣量、流速場流過曲面的流量等
而第二類曲線積分/第二類曲面積分以物理應用為主要,而且是有"方向性"的,涉及向量範圍了.
定積分與二重積分,三重積分的區別與聯絡是什麼,急,**等 20
2樓:阿樓愛吃肉
定積分與二重積分、三重積分有3點不同
:一、三者的概述不同:
1、定積分的概述:定積分是積分的一種,是函式f(x)在區間[a,b]上積分和的極限。
2、二重積分的概述:二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。
重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。
3、三重積分的概述:設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n)。
體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ),作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ,若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關);
則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。
二、三者的幾何意義不同:
1、定積分的幾何意義:表示平面圖形的面積。
2、二重積分的幾何意義:表示曲頂柱體體積。
3、三重積分的幾何意義:表示立體的質量。
三、三者的注意事項不同:
1、定積分的注意事項:一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
2、二重積分的注意事項:平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。
3、三重積分的注意事項:當積分函式為1時,就是其密度分佈均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分佈不均勻。
定積分與二重積分、三重積分均是高等數學中重要內容,其中,定積分是學習二重積分、三重積分的基礎。
3樓:高數線代程式設計狂
問題很抽象。
從變數維度區分:
一般的定積分指的一元函式積分;二重積分是二元函式的積分,三重積分是三元函式的積分。
從幾何意義來說:
一般定積分是求面積;二重積分求曲頂柱體體積,三重積分求空間封閉區域體積
4樓:她鄉的**
從應用上來說,定積分用來算曲邊梯形面積;二重積分可以算空間旋轉體的面積於體積,我覺得二重積分其實是針對旋轉體的,因為空間體是三維的,需要xyz三個座標表示,但是旋轉體的特性便是根據xy平面上的旋轉面的資料就可以推算旋轉體的體積於面積,所以就有了二重積分。比如由直角三角形繞直角邊旋轉一週得到圓錐體的體積面積計算;三重積分就是來算二重積分無法計算的非旋轉體的體積。比如三菱錐。
二重積分與三重積分的區別與聯絡
5樓:遠巨集
定積分與二重積積分與三重積分有三個區別:
一、主要觀點:
1、定積分概述:定積分作為積分,是函式f (x)在區間[a,b]內的積分和的極限。
2、二重積分概述:二重積分是空間中二元函式的積分,類似於定積分,以及特定形式和的極限。其實質是求出頂部彎曲圓柱體的體積。多積分被廣泛應用於計算平面切片的表面積和重心。
3、三重積分的概述:三元函式f (x, y,z)區域ω一階連續偏導數,ω任意分成n個小區域,每個小區域的直徑為rᵢ記得(i = 1,2,……,n)。
卷記錄δδᵢ| | t | | = maxᵢ,在每個小f區(因子ᵢ,ηᵢ,ζᵢ),作為一個永久σf(因子ᵢ,ηᵢ,ζᵢ)δδᵢ,如果型別當| | t | | - > 0極限存在和唯一的(即無關的選擇分割點ω);
被稱為極限函式f (x,y,z)地區ω三重積分,記得∫∫∫f (x,y, z) dv, dv = dxdydz其中。
二、幾何意義:
1、 定積分的幾何意義:表示平面圖形的面積。
2、 二重積分的幾何意義:表示曲面頂柱體的體積。
3、三積分的幾何意義:表示立體的質量。
三、預防措施不同:
1、 定積分注意事項:對於一個函式,可以有不定積分,但沒有定積分:可以有定積分,但不能有不定積分。
對於連續函式,必須存在定積分和不定積分:如果只有有限個不連續點,定積分就存在。如果有跳轉斷點,那麼函式一定不存在,即不定積分一定不存在。
2、二重積分注意事項:平面區域的二重積分可以推廣到高維空間(有向)表面上的積分,稱為表面積分。
3、三次積分注意:積分函式為1時,密度均勻分佈,為1,質量等於其體積值。當積分函式不為1時,密度分佈不均勻。
定積分、二重積分和三重積分是高等數學中的重要內容,其中,定積分是學習二重積分和三重積分的基礎。
6樓:顧小蝦水瓶
1、幾何意義不同
二重積分表示曲頂柱體體積。三重積分表示立體的質量。
2、注意事項不同
二重積分的注意事項:平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。三重積分的注意事項:
當積分函式為1時,就是其密度分佈均勻且為1,質量就等於其體積值。當積分函式不為1時,說明密度分佈不均勻。
3、性質不同
二重積分是二維的,相當於平面。三重積分是三維的,立體的。
關於二重積分和定積分的問題,定積分與二重積分
第一個積分變成第二個積分其實類似於定積分中的變數代換。比如,在第一個積分中令x u,y v 積分就變成 再令u y,v x 不就變成第二個積分了嗎。另外,你的第二個問題 定積分與二重積分 其實用二重積分求平面內任意圖形的面積是一個通用的方法!利用定積分求平面面積其實就是由二重積分推導來的!說得更具體...
計算二重積分,二重積分怎麼計算?
把積分割槽域分為三個x型區域,剩下的就是簡單的定積分的計算了,你把公式代進去算就行了,望採納。根據對稱性可知,積分項中的3x 與2x積分結果為零,所以積分項可以簡化為 x y 2y x y 1 1 再結合右圖分割槽域積分。二重積分怎麼計算?化為二次積分。x y dxdy 0 1 dx 1 2 x y...
說一下曲面積分,二重積分,三重積分,曲線積分分別有什麼意義
曲線積bai分 求面積 二重積du分求 體積 三重積分 zhi可用dao來 求質量 曲面積專分分兩類屬 第一類曲面積分 對面積的曲面積分 幾何含義,知道某曲面每點的面密度,求質量.具體例子 蛋殼的質量.第二類曲面積分 對座標的曲面積分 幾何含義,知道某曲面每點的流速,求單位時間內的流量.具體例子 蛋...