1樓:知音姐姐
因為a ,b,c都為n階方陣,且 abc=0所以abc 的絕對值=0 或ab絕對值*c絕對值=0 或 a絕對值*bc絕對值=0或 a絕對值*b絕對值*c絕對值 =0
必有a絕對值=0或 b絕對值=0 或 c絕對值=0或 ab絕對值=0 或 bc絕對值=0
所以 秩a+秩b+秩c =秩a+秩b 或 秩a+秩b+秩c =秩c+秩b 或 秩a+秩b+秩c =秩a+秩c 或秩a+秩b+秩c =秩a
或 秩a+秩b+秩c =秩b 或 秩a+秩b+秩c =秩c所以秩a+秩b+秩c <=2n
2樓:捲毛道哥在度娘
一樓的絕對值應該是說矩陣的行列式吧~
兩個矩陣乘積的秩滿足的不等式有哪些
3樓:匿名使用者
1、r(a)≤min(m,n)≤m,n。
2、r(ka+lb)≤r(a)+r(b)。
3、r(ab)≤min(r(a),r(b)) ≤r(a)。
4、r(abc)≥r(ab)+r(bc)-r(b)。
5、r(ac)≥r(a) +r(c) -n上推,令b=in。
6、r(ka+lb)-n≤r(a)+r(b)-n≤r(ab)≤min(r(a),r(b))≤r(a)。
擴充套件資料:m×n矩陣的秩最大為m和n中的較小者。有儘可能大的秩的矩陣被稱為有滿秩,否則矩陣是秩不足的。
矩陣的列秩和行秩總是相等的,因此它們可以簡單地稱作矩陣a的秩。通常表示為rk(a) 或 ranka。
只有零矩陣有秩0,a的秩最大為 min(m,n) f是單射,當且僅當a有秩n(在這種情況下,我們稱 a有「滿列秩」)。
4樓:小樂笑了
行秩 = 列秩 = 秩
r(a) ≤
min(m,n) ≤ m, n
r(a+b) = r(b+a)
r(a-b) = r(b-a)
r(ka + lb) ≤ r(a) + r(b)r(ab) ≤ min(r(a), r(b)) ≤ r(a)r(b)
r(abc) ≥ r(ab) + r(bc) - r(b)frobenius(sylvester)不等式
r(ac) ≥ r(a) + r(c) - n上推,令b=inr(a+b)-n = r(b+a)-n
r(a-b)-n = r(b-a)-n
r(ka+lb)-n ≤ r(a) + r(b) - n ≤ r(ab) ≤ min(r(a), r(b)) ≤ r(a)
r(b)上推
關於矩陣秩的不等式證明 50
5樓:懶懶的小杜啦
你要證明的是什麼?要記住矩陣秩的不等式即可 r(a) + r(b) - n ≤ r(ab)≤min(r(a),r(b)) 再應用到證明過程中矩陣的秩證明基本可以解決
矩陣秩不等式有哪些應用? 10
6樓:匿名使用者
看來是要寫畢業**吧,這麼多不等式,應用可老鼻子了,這得自己分門別類的去整理資料。
矩陣的秩化簡階梯形的問題,線性代數,矩陣的秩等於行階梯形矩陣的非零行數,圖中非零行行數怎麼看秩是多少
這個題目不要化階copy梯.因為矩陣是方陣,且行列式容易計算 因為秩為2,所以行列式等於0 所以 1 2a 1 a 2 0 所以 a 1 2 或 a 1 顯然 a 1 時 矩陣的秩等於 1,不符.故 a 1 2.線性代數中,規範的階梯形矩陣怎麼化?大體我知道了,第一行第一個數1,第一列都為0。第二行...
下面那個不等式怎麼證明,矩陣和的秩
麼 知識點 bai若矩陣a的特 徵值為du 1,2,n,那麼 zhia 1 dao2 n 解答 版 a 1 權2 n n 設a的特徵值為 對於的特徵向量為 則 a 那麼 a2 a a2 a 2 2 所以a2 a的特徵值為 2 對應的特徵向量為 a2 a的特徵值為 0 2,6,n2 n 評註 對於a的...
矩陣的行秩與列秩的定義,為什麼矩陣的秩等於行秩也等於列秩
這個定義涉及到向量的極大線性無關組。設a1,a2 as為一個n維向量組,如果向量組中有r個向量線性無關,而任何r 1個向量都線性相關,那麼這r個線性無關的向量稱為向量組的一個極大線性無關組。向量組的極大線性無關組中所含向量的個數,稱為向量的秩。矩陣的行向量的秩稱為行秩。列向量的秩成為列秩。就是把矩陣...