1樓:小樂笑了
基礎解系是不唯一的,
但不同的基礎解系之間,是等價的(可以相互線性表示)。
通解,實際上就是所有解的結構表示,是唯一的,但表現形式,因基礎解系不同,而略有區別
但僅僅是形式不同,也就是說,不管基礎解系選哪一種,通解本質上是一致的
齊次線性方程組的基礎解系唯一嗎
2樓:匿名使用者
齊次線性方程組的基礎解系當然不是唯一的,
只要基礎解系寫出來可以滿足此方程組即可,
而解向量的個數和之間的關係當然是一樣的
3樓:鋒_影痕
當然不是唯一的
回答延伸:
只要基礎解系寫出來可以滿足此方程組即可,而解向量的個數和之間的關係當然是一樣的。
齊次線性方程為什麼叫齊次:
非零常數是x的零次項,只有零是不定次項,可看成0x,也可看成0x²或者0x³.在這裡,自然是看成一次的。
齊次線性方程就是方程中所有的項都是一次的(包栝右邊的0)方程。
通常說常數項為零的一次方程為齊次線性方程,當然是對的。
求齊次線性方程組的基礎解系,求齊次線性方程組的基礎解系及通解
x3 1,x4 0,x3 0,x4 1,代入就得到基礎解系,可以說你下面做的這種方法肯定可以,並且更常用。求齊次線性方程組的基礎解系及通解 係數矩陣 11 1 12 5 3 27 7 32r2 2r1,r3 7r1得 1 1 1 10 7500 1410 9r3 2r2 11 1 10 7 5000...
線性代數,非齊次線性方程組求基礎解系
求非其次的bai特解,你令dux3等於任何數都行,zhix3 0當然可以而且簡單,所 dao以一般都是令為0 求其專次方程 匯出組 的基屬礎解系,只能領x3 1,而且一般都是令x3 x3,或者x3 t。不過反正基礎解系前面有k,所以除了0都行,否則如果你令為0,就沒有意義了。其實就是寫同解方程組 非...
線性代數求方程組通解,線性代數,線性方程組。求通解
對隱式線性方程組copy,注意以下幾點 1.確定係數矩陣的秩r a 由此得 ax 0 的基礎解系所含向量的個數 n r a 2.ax b 的解的線性組合仍是其解的充分必要條件是 組合係數的和等於1.由此得特解 3.ax b 的解的差是ax 0的解 由此得基礎解系 此題 1.r a 3 是已知,四元線...