1樓:匿名使用者
通解就是全部可能的解,如果有多個解的話會含有引數,
特解是其中的一個解,沒有引數。
以圖中的通解為例,含有k1和k2兩個引數,k1隨便取一個值,k2也隨便取一個值(在實數域上的線性方程組可以取任意實數)就會得到一個特解
線性方程組的通解是全部解嗎? 5
2樓:匿名使用者
線性方程組分齊次性方程組和非齊次性方程組
齊次方程組的全部解即為通解
非齊次性方程組的全部解為 通解 + 特解
3樓:匿名使用者
通解是一種表示式,即方程組的全部解都可以用這個表示式表示,係數一般是任意實數
線性代數:其次線性方程組,特解,通解,全部解,基礎解系這四個有啥區別?
4樓:刁如雲顏偲
最好用矩陣解.
20x1+10x2+10x3+15x4=70(1)5x1+5x2+10x3+15x4=35(2)5x1+15x2+5x3+10x4=35(3)8x1+10x2+10x3+20x4=50(4)(1)-(4)*2.5,
(2)-(3),
(3)*4-(1)得0
x1-15
x2-15
x3-35
x4=-55
(5)0
x1-10
x2+5
x3+5
x4=0
(6)0
x1+50
x2+10
x3+25
x4=70
(7)8
x1+10
x2+10
x3+20
x4=50
(4)(5)*2-(6)*3,(6)*5+(7)得0x1+0
x2-45
x3-85
x4=-110
(8)0
x1+0
x2+35
x3+50
x4=70
(9)0
x1+50
x2+10
x3+25
x4=70
(7)8
x1+10
x2+10
x3+20
x4=50
(4)(8)*7+(9)*9得0
x1+0
x2+0
x3-145
x4=-140
(10)
0x1+
0x2+
35x3+
50x4=
70(9)
0x1+
50x2+
10x3+
25x4=
70(7)
8x1+
10x2+
10x3+
20x4=
50(4)
由(10)得
x4=28/29
代入(9)得
x3=18/29
代入(7)得
x2=23/29
代入(4)得
x1=60/29
實際就是用加減消元法,化為階
梯形.解法2:
用excel的矩陣函式解.
輸入矩陣a:
2010
101555
1015515
510810
1020
用minverse
函式得出a的逆陣a-:
0.06897
-0.06897
-0.03448
0.01724
-0.00690
0.00690
0.10345
-0.05172
0.02069
0.37931
0.08966
-0.34483
-0.03448
-0.16552
-0.08276
0.24138
輸入矩陣b:
7035
3550
用mmult函式計算a-與b的乘積:
2.0689655
...x1
0.7931034
...x2
0.6206897
...x3
0.9655172
...x4
就是方程組的解
5樓:匿名使用者
齊次方程組有基礎解系,通解。
非齊次方程組有特解、通解(一般解、全部解)你上個問題的例 3 解答,已都有了。
再不懂,要看教科書關於齊次線性方程組解的結構, 非齊次線性方程組解的結構兩節。
線性代數:看圖,求此非其次線性方程組的通解,特解,一般解,全部解,和其對應其次方程的通解,特解,一
6樓:匿名使用者
例3 增廣矩陣 (a, b) =
[1 1 1 1 1 7]
[3 1 2 1 3 -2]
[0 2 1 2 6 23]
[5 3 4 3 -1 12]
行初等變換為
[1 1 1 1 1 7]
[0 -2 -1 -2 0 -23]
[0 2 1 2 6 23]
[0 -2 -1 -2 -6 -23]
行初等變換為
[1 1 1 1 1 7]
[0 -2 -1 -2 0 -23]
[0 0 0 0 6 0]
[0 0 0 0 0 0]
行初等變換為
[1 1 1 1 0 7]
[0 2 1 2 0 23]
[0 0 0 0 1 0]
[0 0 0 0 0 0]
r(a, b) = r(a) = 3 < 5
方程組有無窮多解。
方程組同解變形為
x1+x2 = 7-x3-x4
2x2 = 23-x3-2x4
x5 = 0
取 x3 = 7, x4 = 0, 得特解 (-8, 8, 7, 0, 0)^t。
匯出組即對應的齊次方程是
x1+x2 = -x3-x4
2x2 = -x3-2x4
x5 = 0
取 x3 = -2, x4 = 0, 得基礎解系 (1, 1, -2, 0, 0)^t;
取 x3 = 0, x4 = -1, 得基礎解系 (0, 1, 0, -1, 0)^t。
對應的齊次方程的通解是
x = k(1, 1, -2, 0, 0)^t+c (0, 1, 0, -1, 0)^t
非齊次方程的通解(一般解,全部解)是
x = k(1, 1, -2, 0, 0)^t+c (0, 1, 0, -1, 0)^t+ (-8, 8, 7, 0, 0)^t。
其中,k, c 為任意常數。
線性代數求方程組通解,線性代數,線性方程組。求通解
對隱式線性方程組copy,注意以下幾點 1.確定係數矩陣的秩r a 由此得 ax 0 的基礎解系所含向量的個數 n r a 2.ax b 的解的線性組合仍是其解的充分必要條件是 組合係數的和等於1.由此得特解 3.ax b 的解的差是ax 0的解 由此得基礎解系 此題 1.r a 3 是已知,四元線...
求解非齊次線性方程組的通解,求解線性代數非齊次線性方程組通解
增廣矩陣 a,b 1 1 3 1 1 3 1 3 4 4 初等行變換為 1 1 3 1 1 0 4 6 7 1 r a,b r a 2 4,方程組有無窮多解。方程組化為 x1 x2 1 3x3 x4 4x2 1 6x3 7x4 取 x3 0,x4 1,得 x2 2,x1 2,即得特版解 2,2,0,...
求助大神 關於線性代數,是不是齊次線性方程組的基礎解系可以有很多,而一組基礎解系也可以對應好多齊次
不是基礎解繫有很多.而是基礎解系不唯一.這與向量組的極大無關組不唯一類似 一個方程組求了三個?你是說基礎解系所含的向量個數吧 任意一個齊次線性方程組都有基礎解系嗎?線性代數,求大神解答。不一定,有基礎解系首先要有解吧,但並不是所有的齊次線性方程組都有解。基礎解系含解的個數等於n r,其中n是未知量的...