1樓:匿名使用者
a、baib、c為三角形邊長du,又a/cosa=b/cosb=c/cosc
而三角形至多有一個直zhi
角或鈍角dao,因此a、版b、c均為銳角
由正弦權定理得:a/sina=b/sinb,a/b=sina/sinb
又a/cosa=b/cosb,a/b=cosa/cosb因此sina/sinb=cosa/cosbsinacosb-cosasinb=0
sin(a-b)=0
a、b均為銳角,a=b
同理,b=c,c=a
a=b=c
三角形是等邊三角形。
在三角形abc中,已知a/cosa=b/cosb=c/cosc 則三角形abc是什麼三角形
2樓:匿名使用者
∵a/cosa=b/cosb=c/cosc ......(1)又,根據正弦定理:a/sina=b/sinb=c/sinc ....(2)
∴(1)÷(2)得:
tana=tanb=tanc
∴a=b=c
∴等邊三角形
3樓:匿名使用者
a/cosa=b/cosb
即 acosb=bcosa
代進bai正弦定理du
zhi 得 sinacosb=sinbcosasinacosb-sinbcosa=0
sin(a-b)=0
所以dao a=b 同理b=c
所以 a=b=c
為等邊回三角形答
4樓:匿名使用者
a/cosa=b/cosb=c/cosc=ka=kcosa, b=kcosb, c=kcosc=>
a/sina=b/sinb = c/sinc=>cota =cotb = cotc
=>a=b=c =π/3
三角形abc是等版邊權三角形
在三角形abc中abc中,a/cosa=b/cosb=c/cosc 則三角形abc一定是__
5樓:吉祥如意
(1)根據正弦
bai定理可知
dua/sina=b/sinb=c/sinc對於三角形abc則有a/sina=b/sinb=c/sinczhi (daoa)
而已知內a/cosa=b/cosb=c/cosc (b)
方程(b)/(a)可得:容tana=tanb=tanc所以a=b=c
(2)由於a=b=c
所以三角形abc一定是等邊三角形
6樓:匿名使用者
等邊三角來形.
∵a/cosa=b/cosb=c/cosc∴自2abc/(b²+c²-a²)=2abc/(b²-c²+a²)=2abc/(b²-c²+a²)
即b²+c²-a²=b²-c²+a²=b²-c²+a²∴b²=c²=a²
即a=b=c
∴△abc一定是等邊三角形
很高興為你解答本題,沒問題的話,請及時點選右上角的採納滿意哈~
7樓:匿名使用者
a/sina=b/sinb=c/sinc=2ra=2rsina,b=2rsinb,c=2rsinc,a/cosa=b/cosb=c/cosc
sina/cosa=sinb/cosb=sinc,/coscsinacosb-cosasinb=0
sin(a-b)=0,sin(a-c)=0,sin(b-c)=0,a=b,a=c,b=c
即有, a=b=c
三角形abc一定是
專等邊屬三角形
在三角形ABC中 b cc aa b 4 5 6則三角形得最大內角度是
b c 4 c a 5 a b 6 k所以b c 4k c a 5k a b 6k 相加制2 a b c 15k a b c 7.5k 所以a 3.5k,b 2.5k,c 1.5k所以a最大 baicosa b du2 c 2 a 2 2bc 6.25k 2 2.25k 2 12.25k 2 7.5...
在三角形ABC中。sinAcosC cosAsinC根號3 2,若b根號7,三角形ABC面積為
三角形最基本的條件,兩邊之和大於第三邊。在三角形abc中,cosc cosa 根號3sina cosb 0,1 求角b,2 若a c 1,求b的範圍 在三角形abc中.已知a 2,b 2根號2,c 15 求角a,b和邊c的值 a 30 b 135 c 6 2。解 因為cos15 cos 45 30 ...
在三角形ABC中,若asinAbcosBc
a sina b cosb c cosc 由a sina b sinb c sinc可得 sinb cosb,sinc cosc b 45 c 45 三角形abc是直角三角形 若sina a cosb b cosc c,由正弦定理,sinasinb sinacosb,sinccosb sinbcos...