1樓:
不同方法得到的結果可能不一樣,在換元積分方法裡尤為常見,至於最後的結果對不對,大可不必擔心,可以對結果求導,看是否為原函式,只要是,那就一定對,考研是不會扣你分的
求不定積分的方法如何選取?
2樓:匿名使用者
不定積分主要有三種方法:
第一類換元積分,又稱為湊微分法,這種主要考察微分的所有公式是否熟悉,沒多少技巧,背公式吧。(當然你要是複習考研數學的話還有一些技巧,否則背公式就夠了)
第二類換元積分,又稱為換元積分法,這裡主要有三種換元方式:第一為三角代換,代換對應方式見**;第二為倒代換,即令x=1/t,主要是當分母次數較高時用,當你怎麼也積不出來時往往倒代換一下就迎刃而解了;第三為指數代換,見**。
第三類為分部積分,按書本上公式老老實實做就可以了,沒什麼需要說的,不再贅述。
3樓:戰巨集義廉珠
這麼強啊,初中就研究微積分了。不過你順序弄錯了,定積分的計算是建立在不定積分上,你應該學習不定積分,要掌握湊積分法,分步積分,換元積分,有理式積分,三角函式積分。
不定積分掌握了以後,定積分的計算利用牛頓-萊布尼茨公式就容易解決。
初中的知識都學夠了,高中的呢?這麼快就研究微積分?如果真是這樣的,確實是天才性質。
關於不定積分問題。求出原函式,方法不同結果會不一樣。
4樓:匿名使用者
不同的方法求出的原函式形式可能會不太相同,但是通過適當的恆等變形是能夠互相轉化的。只要計算過程中沒有犯算錯或者漏算之類的錯誤。只要求出了原函式,這條路走的通,就是對的。
不定積分問題計算
5樓:
對於不定積分,演算法
不同,結果不同是正常的,但是最後得到的原函式一定只相差一個常數。原因就是,不定積分的結果不是一個數,而是一個函式族,這個函式族內的函式寫成f(x)+c,f(x)+a+c(a是個具體的數)都是可以的,c可以「吸收」任意其它的實數a。
不定積分的問題,不定積分問題計算
因為 secx 1 cosx 若secx存在,就意味著 cosx 0,也就是sinx 1or1換句話說,如果1 sinx 0或1 sinx 0,secx就沒有意義了,這道題題幹都不成立了。第一題,du原式 1 2 zhi2 x 2 dx 1 2 1 4 x dao2 d 4 x 2 這裡拆項後用回湊...
不定積分問題,不定積分的問題
如果是 e x 2 dx,這個是求不出原函式的,或者說原函式無法用初等函式表示,也叫高斯積分 概率積分或者高斯函式 誤差函式,或者說正態分佈函式。如下 如果真的是 e x 2 dx,那就更加沒法求出原函式了,所以不定積分的話,直接放棄吧,是求不出來的。不定積分的問題 是對u求導數不是對r,這個可以根...
求不定積分,求不定積分。
1 先求 e x cos2x dx e x cos2x dx 1 2 e x d sin2x 1 2 e x sin2x 1 2 e x sin2x dx 1 2 e x sin2x 1 2 1 2 e x d cos2x 1 2 e x sin2x 1 4 e x cos2x 1 4 e x co...