求不定積分,怎樣求不定積分

2022-03-09 04:18:09 字數 5242 閱讀 1443

1樓:匿名使用者

第二題可以換元,當然也有更巧妙的分部積分法:

以上,請採納。

2樓:晴天擺渡

1、原式=∫dx/[3sin²(x/2)+3cos²(x/2)+cos²(x/2)-sin²(x/2)]

=∫dx/[2sin²(x/2)+4cos²(x/2)]=∫sec²(x/2)dx/[4+2tan²(x/2)]=1/4 ∫sec²(x/2)dx/[1+tan²(x/2)/2]=½∫d[tan(x/2)] / 【1+[tan(x/2)/√2]²】

=√2/2 ∫d[tan(x/2)/√2] / 【1+[tan(x/2)/√2]²】

=√2/2 arctan[tan(x/2)/√2]2、原式=∫√(1-x²)/(x+1) dx=∫cos²tdt/(sint+1)(令x=sint)=∫(1-sin²t)dt/(sint+1)=∫(1-sint)dt

=t+cost+c

=arcsinx+√(1-x²)+c

3樓:匿名使用者

令x=2u,則:u=x/2,dx=2du.

∴∫[1/(3+cosx)]dx

=2∫[1/(3+cos2u)]du

=2∫{1/[3+2(cosu)^2-1]}du=2∫{1/[2+2(cosu)^2]}du=∫{1/[1+(cosu)^2]du

=∫{1/[2(cosu)^2+(sinu)^2]}du=∫{1/[2+(tanu)^2]}[1/(cosu)^2]du=(1/2)∫{1/[1+(1/2)(tanu)^2]}d(tanu)

=(√2/2)∫{1/[1+(1/2)(tanu)^2]}d[(1/√2)tanu]

=(√2/2)arctan[(1/√2)tanu]+c=(√2/2)arctan[(√2/2)tan(x/2)]+c

怎樣求不定積分 10

4樓:是你找到了我

1、直接利用積分公式求出不定積分。

2、通過湊微分,最後依託於某個積分公式。進而求得原不定積分。例如3、運用鏈式法則:

4、運用分部積分法:∫udv=uv-∫vdu;將所求積分化為兩個積分之差,積分容易者先積分。實際上是兩次積分。

積分容易者選為v,求導簡單者選為u。例子:∫inx dx中應設u=inx,v=x。

擴充套件資料:一、常用的積分公式有:

二、求不定積分的注意事項:

1、如果f(x)在區間i上有原函式,即有一個函式f(x)使對任意x∈i,都有f'(x)=f(x),那麼對任何常數顯然也有[f(x)+c]'=f(x).即對任何常數c,函式f(x)+c也是f(x)的原函式。這說明如果f(x)有一個原函式,那麼f(x)就有無限多個原函式。

2、雖然很多函式都可通過如上的各種手段計算其不定積分,但這並不意味著所有的函式的原函式都可以表示成初等函式的有限次複合,原函式不可以表示成初等函式的有限次複合的函式稱為不可積函式。

5樓:夢色十年

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

舉例說明如下:

1、第二類換元積分法

令t=√(x-1),則x=t^2+1,dx=2tdt

∫x/√(x-1)dx=∫(t^2+1)/t*2tdt

=2∫(t^2+1)dt

=(2/3)*t^3+2t+c

=(2/3)*(x-1)^(3/2)+2√(x-1)+c,其中c是任意常數。

2、第一類換元積分法

∫x/√(x-1)dx=∫(x-1+1)/√(x-1)dx

=∫[√(x-1)+1/√(x-1)]d(x-1)

=(2/3)*(x-1)^(3/2)+2√(x-1)+c,其中c是任意常數。

3、分部積分法

∫x/√(x-1)dx=∫2xd[√(x-1)]

=2x√(x-1)-∫2√(x-1)dx

=2x√(x-1)-(4/3)*(x-1)^(3/2)+c,其中c是任意常數。

6樓:pasirris白沙

1、下面給樓主提供一份不定積分的方法總結,**可以點選放大,放大後更加清晰;

.2、這些方法,都是原則性的,樓主需要多解幾道題,才能有感覺,有 sense;

.3、如有疑問,歡迎追問,有問必答。.

計算不定積分

7樓:我是一個麻瓜啊

^常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

8樓:於海波司空氣

不定積分公式:∫f(x)dx=f(x)+c。其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

不定積分的積分公式主要有如下幾類:

含ax+b的積分、含√(a+bx)的積分、含有x^2±α^2的積分、含有ax^2+b(a>0)的積分、含有√(a²+x^2) (a>0)的積分、含有√(a^2-x^2) (a>0)的積分、含有√(|a|x^2+bx+c) (a≠0)的積分。

含有三角函式的積分、含有反三角函式的積分、含有指數函式的積分、含有對數函式的積分、含有雙曲函式的積分。

9樓:聞人鬱

計算不定積分,首先要把握原函式與不定積分的概念,基本積分法只要熟記常見不定積分的原函式即可。

注意把握三種不定積分的計算方法:

直接積分法

2.換元積分法(其中有兩種方法)

3.分部積分法。

10樓:西域牛仔王

前面的過程是你自己寫的吧?該解法(令 x=sect)並不錯,

只是最後的表示式形式不同而已,本質是一樣的。

這是由於有公式 arcsinx + arccosx = π/2 。(-1 ≤ x ≤ 1)

11樓:說的人

||^∫secx=ln|secx+tanx|+c

推導:左邊=∫dx/cosx=∫cosxdx/(cosx)^2

=∫d(sinx)/[1-(sinx)^2]

令t=sinx,

=∫dt/(1-t^2)

=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)

=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)

=(1/2)ln|1+t|-(1/2)ln|1-t|+c

=(1/2)ln|(1+t)/(1-t)|+c

=(1/2)ln|(1+sinx)/(1-sinx)|+c //在對數中分子分母同乘1+sinx,

=(1/2)ln|(1+sinx)^2/(cosx)^2|+c

=ln|(1+sinx)/cosx|+c

=ln|1/cosx+sinx/cosx|+c

=ln(secx+tanx|+c=右邊,

∴等式成立。

提供一些給你!

∫ a dx = ax + c,a和c都是常數

∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

∫ 1/x dx = ln|x| + c

∫ a^x dx = (a^x)/lna + c,其中a > 0 且 a ≠ 1

∫ e^x dx = e^x + c

∫ cosx dx = sinx + c

∫ sinx dx = - cosx + c

∫ cotx dx = ln|sinx| + c

∫ tanx dx = - ln|cosx| + c = ln|secx| + c

∫ secx dx = (1/2)ln|(1 + sinx)/(1 - sinx)| + c = ln|secx + tanx| + c

∫ cscx dx = ln|tan(x/2)| + c = (1/2)ln|(1 - cosx)/(1 + cosx)| + c = - ln|cscx + cotx| + c = ln|cscx - cotx| + c

∫ sec^2(x) dx = tanx + c

∫ csc^2(x) dx = - cotx + c

∫ secxtanx dx = secx + c

∫ cscxcotx dx = - cscx + c

∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + c

∫ dx/√(a^2 - x^2) = arcsin(x/a) + c

∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + c

∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + c

∫ √(x^2 - a^2)dx=x/2√(x^2 - a^2)-a^2/2ln[x+√(x^2 - a^2)] + c

∫ √(x^2 +a^2)dx=x/2√(x^2 +a^2)+a^2/2ln[x+√(x^2 +a^2)] + c

∫ √(a^2 - x^2)dx=x/2√(a^2 - x^2)+a^2/2arcsin(x/a) + c

學習進步!望採納,o(∩_∩)o~

12樓:匿名使用者

^^令u=x+1/x

u'=1-1/x^2

注意到(x-1/x^3)/(1-1/x^2)=(x^4-1)/(x^3-x)=(x^2+1)/x=x+1/x=u

故原式=∫ue^udu

簡單的分佈積分

=ue^u+e^u+c

將u=x+1/x帶入即可。

ps:積分中含e^f(x),或是sinf(x),cosf(x)一般都需要將f(x)令為u來解。

求不定積分,求不定積分。

1 先求 e x cos2x dx e x cos2x dx 1 2 e x d sin2x 1 2 e x sin2x 1 2 e x sin2x dx 1 2 e x sin2x 1 2 1 2 e x d cos2x 1 2 e x sin2x 1 4 e x cos2x 1 4 e x co...

求不定積分1axbxdx,求不定積分不定積分1xabxdx詳細過程謝謝

log b x log a x b a c 求不定積分不定積分 1 x a b x dx 詳細過程 謝謝 5 最近我也是碰到了這個問題,但是你用x acos 2t bsin 2t這個就能解答出你想要的答案喲!很簡單的演算法,我也是最近才想到的!大部分這類題都是直接給個答案而已還要自己推,我推了很久才...

求不定積分

sec x dx secx sec x dx secx dtanx,分部積分法,sec x的積分是tanx secx tanx tanx dsecx,分部積分法 secx tanx tanx secx tanx dx,secx的導數是secx tanx secx tanx secx sec x 1 ...