1樓:李夏璇鈕浩
常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2)
dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
擴充套件資料:
積分的一個嚴格的數學定義由波恩哈德·黎曼給出(參見條目「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。
比如說,路徑積分是多元函式的積分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個曲面代替。對微分形式的積分是微分幾何中的基本概念。
求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)
2樓:相易爾蔚
|∫secx=ln|secx+tanx|+c
推導:左邊=∫dx/cosx=∫cosxdx/(cosx)^2=∫d(sinx)/[1-(sinx)^2]令t=sinx,
=∫dt/(1-t^2)
=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)
=(1/2)ln|1+t|-(1/2)ln|1-t|+c=(1/2)ln|(1+t)/(1-t)|+c=(1/2)ln|(1+sinx)/(1-sinx)|+c//在對數中分子分母同乘1+sinx,
=(1/2)ln|(1+sinx)^2/(cosx)^2|+c=ln|(1+sinx)/cosx|+c
=ln|1/cosx+sinx/cosx|+c=ln(secx+tanx|+c=右邊,
∴等式成立。
提供一些給你!∫a
dx=ax+
c,a和c都是常數
∫x^adx=
[x^(a
+1)]/(a+1)
+c,其中a為常數且a≠
-1∫1/xdx
=ln|x|+c
∫a^xdx=
(a^x)/lna
+c,其中a
>0且a≠1∫
e^xdx
=e^x+c
∫cosxdx=
sinx+c
∫sinxdx=
-cosx+c
∫cotxdx=
ln|sinx|+c
∫tanxdx=
-ln|cosx|+c
=ln|secx|+c
∫secxdx=
(1/2)ln|(1
+sinx)/(1
-sinx)|+c
=ln|secx
+tanx|+c
∫cscxdx=
ln|tan(x/2)|+c
=(1/2)ln|(1
-cosx)/(1
+cosx)|+c
=-ln|cscx
+cotx|+c
=ln|cscx
-cotx|+c
∫sec^2(x)dx=
tanx+c
∫csc^2(x)dx=
-cotx+c
∫secxtanxdx=
secx+c
∫cscxcotxdx=
-cscx+c
∫dx/(a^2
+x^2)
=(1/a)arctan(x/a)+c
∫dx/√(a^2
-x^2)
=arcsin(x/a)+c
∫dx/√(x^2
+a^2)
=ln|x
+√(x^2
+a^2)|+c
∫dx/√(x^2
-a^2)
=ln|x
+√(x^2
-a^2)|+c
∫√(x^2
-a^2)dx=x/2√(x^2
-a^2)-a^2/2ln[x+√(x^2-a^2)]+c
∫√(x^2
+a^2)dx=x/2√(x^2
+a^2)+a^2/2ln[x+√(x^2+a^2)]+c
∫√(a^2
-x^2)dx=x/2√(a^2
-x^2)+a^2/2arcsin(x/a)+c學習進步!望採納,o(∩_∩)o~
常用不定積分公式?
3樓:文子
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定,其中f是f的不定積分。
根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計拿搏算關係。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。
4樓:鞠翠花潮戌
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2)
dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
擴充套件資料:
積分的一個嚴格的數學定義由波恩哈德·黎曼給出(參見條目「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。
比如說,路徑積分是多元函式的積念慧分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個敬枝曲面代替。對微分形式的積分是微分幾何中的基本概念。
求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。亮高敏(用換元法說,就是把f(x)換為t,再換回來)
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)
5樓:鄒桂枝殳巳
∫secx=ln|secx+tanx|+c推導:左邊=∫dx/正大cosx=∫cosxdx/(cosx)^2=∫d(sinx)/[1-(sinx)^2]令t=sinx,
=∫dt/(1-t^2)
=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)
=(1/2)ln|1+t|-(1/2)ln|1-t|+c=(1/2)ln|(1+t)/(1-t)|+c=(1/2)ln|(1+sinx)/(1-sinx)|+c//在對數中分子分母同乘1+sinx,
=(1/2)ln|(1+sinx)^2/(cosx)^2|+c=ln|(1+sinx)/cosx|+c
=ln|1/cosx+sinx/cosx|+c=ln(secx+tanx|+c=右邊,
∴等式山清飢成立。
提供一些給你!∫a
dx=ax+
c,a和c都逗返是常數
∫x^adx=
[x^(a
+1)]/(a+1)
+c,其中a為常數且a≠
-1∫1/xdx
=ln|x|+c
∫a^xdx=
(a^x)/lna
+c,其中a
>0且a≠1∫
e^xdx
=e^x+c
∫cosxdx=
sinx+c
∫sinxdx=
-cosx+c
∫cotxdx=
ln|sinx|+c
∫tanxdx=
-ln|cosx|+c
=ln|secx|+c
∫secxdx=
(1/2)ln|(1
+sinx)/(1
-sinx)|+c
=ln|secx
+tanx|+c
∫cscxdx=
ln|tan(x/2)|+c
=(1/2)ln|(1
-cosx)/(1
+cosx)|+c
=-ln|cscx
+cotx|+c
=ln|cscx
-cotx|+c
∫sec^2(x)dx=
tanx+c
∫csc^2(x)dx=
-cotx+c
∫secxtanxdx=
secx+c
∫cscxcotxdx=
-cscx+c
∫dx/(a^2
+x^2)
=(1/a)arctan(x/a)+c
∫dx/√(a^2
-x^2)
=arcsin(x/a)+c
∫dx/√(x^2
+a^2)
=ln|x
+√(x^2
+a^2)|+c
∫dx/√(x^2
-a^2)
=ln|x
+√(x^2
-a^2)|+c
∫√(x^2
-a^2)dx=x/2√(x^2
-a^2)-a^2/2ln[x+√(x^2-a^2)]+c
∫√(x^2
+a^2)dx=x/2√(x^2
+a^2)+a^2/2ln[x+√(x^2+a^2)]+c
∫√(a^2
-x^2)dx=x/2√(a^2
-x^2)+a^2/2arcsin(x/a)+c學習進步!望採納,o(∩_∩)o~
6樓:海海
^1)∫0dx=c 不定積分的定義
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)兆搜∫襲茄cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本積分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫族禪歷chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;
求不定積分,求不定積分。
1 先求 e x cos2x dx e x cos2x dx 1 2 e x d sin2x 1 2 e x sin2x 1 2 e x sin2x dx 1 2 e x sin2x 1 2 1 2 e x d cos2x 1 2 e x sin2x 1 4 e x cos2x 1 4 e x co...
求不定積分,怎樣求不定積分
第二題可以換元,當然也有更巧妙的分部積分法 以上,請採納。1 原式 dx 3sin x 2 3cos x 2 cos x 2 sin x 2 dx 2sin x 2 4cos x 2 sec x 2 dx 4 2tan x 2 1 4 sec x 2 dx 1 tan x 2 2 d tan x 2...
求不定積分1axbxdx,求不定積分不定積分1xabxdx詳細過程謝謝
log b x log a x b a c 求不定積分不定積分 1 x a b x dx 詳細過程 謝謝 5 最近我也是碰到了這個問題,但是你用x acos 2t bsin 2t這個就能解答出你想要的答案喲!很簡單的演算法,我也是最近才想到的!大部分這類題都是直接給個答案而已還要自己推,我推了很久才...