已知數列an和bn滿足 a1 1,a

2022-02-02 11:22:14 字數 1030 閱讀 6717

1樓:六語昳

b1=√a1a2=√2

b2=b1q=√a2a3,a3=b1^2q^2/a2=q^2

bn=b1q^(n-1)=√anan+1

bn+2=b1q^(n+1)=√an+1an+2

anan+1=2q^(n-1)

an+2an+1=2q^(n+1)

an/an+2=1/q^2

an+2=an *q^2

1、得證

2、cn=a(2n-1)+2a(2n)

a(2n+2)=q^2a(2n)

a(2n+1)=a(2n-1+2)=q^2a(2n-1)

cn+1/cn

=[a(2n-1+2)+2a(2n+2)]/[a(2n-1)+2a(2n)]

=q^2*[a(2n-1)+2a(2n)]/[a(2n-1)+2a(2n)]

=q^2

∴ 是等比數列,公比q^2

3、an+2=anq^2

1/a(2n)=1/a(2n-2+2)=1/q^2a(2n-2)=1/q^4a(2n-4)=1/q^6a(2n-6)

=1/[q^2(n-1)a(2n-2n+2]

同理,1/a(2n-1)=1/q^2a(2n-3)=1/q^2(n-1)a1

s=1/a1+1/a2+...+1/a(2n-1)+1/a(2n)

是兩個等比數列之和,公比都是q^2,第一項分別是b1=1/a1=1,c1=1/a2=1/2

都是n項

據求和公式:

s=(1-q^2n)/(1-q^2)+(1/2)(1-q^2n)/(1-q^2)

=(3/2)(1-q^n)(1+q^n)/(1-q)(1+q)

q≠±1

q^2=1

則,a3=a1=a5=...=a(2n-1)=1

a2=a4=a6=...=a(2n)=1/2

s=n/2+n=3n/2

2樓:君七琛琛

bn^2=anan+1 b[n+1]^2=an+1an+2=bn^2q^2 兩式相除

已知數列an滿足a11,anan1nn2這個

an an 1 n 1式襲則an 1 an 2 n 1 2式an 2 an 3 n 2 3式.a2 a1 2 n 1式上述各式相 加,左等於an a1 an 1,右等於2 3 4 n 1 2 n 1 2 n 左等於右,化簡得an n 1 n 2 累加法,an an 1 n,有a2 a1 2,a3 a...

已知數列an的前n項和sn滿足 s1 1,s n 1 2sn 1 n屬於正整數

解 1 s n 1 2sn 1 n n s n 2 2 s n 1 1 得 a n 2 a n 1 2 即q 2 s1 1 a1 1 令n 1,由 得 a2 2 a2 a1 2,也滿足 對一切n n 都有a n 1 an 2 an a1 q n 1 2 n 1 即的通項公式為an 2 n 1 n n...

高中數學已知數列an滿足an 2an 1 1 n 2 且a1 1,bn log 2 a

a n 1 2a n 1 a n 1 1 2 a n 1 是首項為a 1 1 2,公比為2的等比數列。a n 1 2 2 n 1 2 n.a n 2 n 1.b n log a 2n 1 1 log 2 2n 1 2n 1.c n 1 b 2n 1 1 2 2n 1 1 1 4n 1 s n 沒法求...