1樓:匿名使用者
|^(1+y)dx +(x-1)dy=0
(1+y)dx =-(x-1)dy
- ∫daodx/(x-1) = ∫dy/(1+y)-ln|專x-1| +c' =ln|1+y|(1+y)/(x-1) =e^屬c'
1+y =c(x-1)
y = c(x-1) -1
高數題求助,解微分方程的通解?
2樓:小茗姐姐
^t=y/x
dy=tdx+xdt
tdx+xdt-tdx=t²xe^(tx)(tdx+xdt)xdt=t²xe^(tx)(tdx+xdt)dt=t²de^(tx)
dt/t²=de^(tx)
-1/t=∫de^(tx)
-1/t=e^(tx)+c
eʸ+x/y=c
高數微分方程求通解 20
3樓:匿名使用者
(5)對x求導,y'-y=e^x,設y=(ax+b)e^x代入,得通解y=(x+c)e^x
4樓:匿名使用者
^5. 兩邊對x 求導,du 得 y'(x) = e^zhix + y(x),
即 y' - y = e^x 是 一元線性微分方dao程版,通解是y = e^(∫
權dx)[∫e^x e^(-∫dx)dx + c]= e^x[∫dx + c] = e^x(x+c)8. 特徵方程 r^2 + 4 = 0, r = ±2i則得通解 y = acos2x+bsin2x
5樓:基拉的禱告
希望有所幫助,望採納哦
微分方程的通解怎麼求?
6樓:汗海亦泣勤
^已知微分方程的通解怎麼求這個微分方程
答:求導!如:
1。x^2-xy+y^2=c等式兩邊對x求導:2x-y-x(dy/dx)+2y(dy/dx)=0故dy/dx=(2x-y)/(x-2y);或寫成2x-y-(x-2y)y′=0
若要求二階微分方程則需再求導一次:
2-y′-(1-2y′)y′+(x-2y)y〃=02。e^(-ay)=c1x+c2
-ay′e^(-ay)=c₁(一階微分方程)-ay〃e^(-ay)-ay′(-ay′)e^(-ay)=0,即a²(y′)²-ay〃=0(二階微分方程)
7樓:秦桑
此題解法如下:
∵ (1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0==>x-y+xy=c (c是常數)
∴ 此方程的通解是x-y+xy=c。
8樓:逯暮森香梅
祝:學習棒棒噠!^.^
9樓:匿名使用者
[高數]變限積分求導易錯點
10樓:匿名使用者
解:∵(1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0==>x-y+xy=c (c是常數)
∴此方程的通解是x-y+xy=c。
11樓:糜穆嶽葉舞
題目是不是弄錯了啊,是y''+2y'-3y=0吧如果是y"+2y'-3y=o過程如下:
解:該微分方程的特徵方程為r∧2+2r-3=0解得r1=-3,r2=1
∴微分方程的通解為y=c1e∧-3x+c2e∧x
高數求微分方程通解 求詳細過程
12樓:真de無上
y[x]= -(c[1]/(2 x^2)) + c[2]
13樓:匿名使用者
^let
u= x^3.y'
du/dx = x^3.y'' +3x^2.y'
y''= [du/dx - (3/x)u] /x^3//xy''+3y'=0
x + 3u/x^3 =0
x.du/dx=0
u= ∫ dx/x
= lnx + c1
x^3. dy/dx = lnx + c1dy/dx = (lnx + c1)/x^3y= ∫ (lnx + c1)/x^3 dx= -(c1/2)(1/x^2) + ∫ lnx /x^3 dx= -(c1/2)(1/x^2) -(1/2)∫ lnx d(1/x^2)
= -(c1/2)(1/x^2) -(1/2)( lnx/x^2 ) +(1/2)∫ dx/x^3
= -(c1/2)(1/x^2) -(1/2)( lnx/x^2 ) -(1/4)(1/x^2) +c2
= k1.(1/x^2) -(1/2)( lnx/x^2 ) +c2
高等數學,二階微分方程,求通解,需要詳細步驟,謝謝 40
14樓:匿名使用者
特徵bai
方程 r^2-6r+9=0 特徵根 r1,r2 =3
對應齊次方du程通解 = ( c1 + c2 x) e^zhi(3x)
設特解dao形如 y * = x² (ax+b) e^(3x),
y* ' = (3a x² + bx + 3a x³ + 3b x²) e^(3x),
y* '' = [ 9(a x³ + b x²) + 6(2b x + 3a x²) + 2b + 6a x ] e^(3x)
代入原回方程 => a= 1/6,b=1/2
=> 通解 y = ( c1 + c2 x) e^(3x) + x² (x/6 + 1/2) e^(3x)
有幫助請採納答,謝謝
高數微分方程求通解,高數微分方程求通解
5 對x求導,y y e x,設y ax b e x代入,得通解y x c e x 5.兩邊對x 求導,du 得 y x e zhix y x 即 y y e x 是 一元線性微分方dao程版,通解是y e 權dx e x e dx dx c e x dx c e x x c 8.特徵方程 r 2 ...
2道高數解微分方程題求解,在高數解微分方程的時候,全微分方程的求解公式是怎麼來的?望達人告知一下推導過程!感激不盡!
1.先解齊線性方程 xy 1 x y 0的通解,得到 y ce x lnx c為 任意常數 其次利用常數變易法求非齊線性方程 xy 1 x y e 2x 的通解,把c看成是 c x 微分 後將其代入原方程得到xe x lnx c x e 2x 所以c x e x c1,c1為任意常數 從而原方程的通...
大學高數微分方程題求解,大學高數微分方程題目
lnc1 是一個常熟,c也是是一個常熟,沒有分別 大學高數微分方程題目 20 f x 可微,未知來是否可導源,bai du所以令g x f x x f x x dx,g 1 0 則1 g x x x f x x x g x 1 解微zhi 分方程得g x 而後得 daof x g x 1 兩邊求導,...