1樓:匿名使用者
(5)對x求導,y'-y=e^x,設y=(ax+b)e^x代入,得通解y=(x+c)e^x
2樓:匿名使用者
^5. 兩邊對x 求導,du 得 y'(x) = e^zhix + y(x),
即 y' - y = e^x 是 一元線性微分方dao程版,通解是y = e^(∫
權dx)[∫e^x e^(-∫dx)dx + c]= e^x[∫dx + c] = e^x(x+c)8. 特徵方程 r^2 + 4 = 0, r = ±2i則得通解 y = acos2x+bsin2x
3樓:基拉的禱告
希望有所幫助,望採納哦
高等數學微分方程求通解
4樓:匿名使用者
是齊次方bai程,令 y = xu,則 微分du方程化為u + xdu/dx = (1+u)/(1-u)xdu/dx = (1+u)/(1-u) - u = (1+u^zhi2)/(1-u)
(1-u)du/(1+u^2) = dx/xarctanu - (1/2)ln(1+u^2) = lnx + lnc
e^(arctanu) = cx√
(1+u^2)
通解dao是 e^[arctan(y/x)] = c√(x^2+y^2)
高數,微分方程求通解
5樓:匿名使用者
|^(1+y)dx +(x-1)dy=0
(1+y)dx =-(x-1)dy
- ∫daodx/(x-1) = ∫dy/(1+y)-ln|專x-1| +c' =ln|1+y|(1+y)/(x-1) =e^屬c'
1+y =c(x-1)
y = c(x-1) -1
高等數學,微分方程的通解為
6樓:三城補橋
^^解:將原方程整理為,y''-[2x/(x^2+4)]y'+[2/(x^2+4)]y=0。
∵-[2x/(x^2+4)]+x[2/(x^2+4)]=0,∴原方程回有特解y=x。
設y1=u(x)x是方程的解,將答y1帶入原方程,可得u(x)=x-4/x。
∴其通解為yc=c1x+c2y1=c1x+c2(x^2-4)。供參考。
高數,微分方程求通解,高數題求助,解微分方程的通解?
1 y dx x 1 dy 0 1 y dx x 1 dy daodx x 1 dy 1 y ln 專x 1 c ln 1 y 1 y x 1 e 屬c 1 y c x 1 y c x 1 1 高數題求助,解微分方程的通解?t y x dy tdx xdt tdx xdt tdx t xe tx t...
大學高數微分方程題求解,大學高數微分方程題目
lnc1 是一個常熟,c也是是一個常熟,沒有分別 大學高數微分方程題目 20 f x 可微,未知來是否可導源,bai du所以令g x f x x f x x dx,g 1 0 則1 g x x x f x x x g x 1 解微zhi 分方程得g x 而後得 daof x g x 1 兩邊求導,...
2道高數解微分方程題求解,在高數解微分方程的時候,全微分方程的求解公式是怎麼來的?望達人告知一下推導過程!感激不盡!
1.先解齊線性方程 xy 1 x y 0的通解,得到 y ce x lnx c為 任意常數 其次利用常數變易法求非齊線性方程 xy 1 x y e 2x 的通解,把c看成是 c x 微分 後將其代入原方程得到xe x lnx c x e 2x 所以c x e x c1,c1為任意常數 從而原方程的通...