1樓:匿名使用者
∵f(x+1)
與f(x-1)都是奇函式內,
∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),∴函式f(x)關於容點(1,0),
及點(-1,0)對稱,
函式f(x)是週期t=2[1-(-1)]=4的周期函式.∴f(-x-1+4)=-f(x-1+4),f(-x+3)=-f(x+3),
f(x+3)是奇函式.故選d
函式f(x)的定義域為r,若f(x+1)與f(x-1)都是奇函式則
2樓:清晨陽光
答案d分析:首先由奇函式性質求f(x)的週期以及對稱中心,然後利用所求結論來分別判斷四個選項即可
解答:∵f(x+1)與f(x-1)都是奇函式,
∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),
∴函式f(x)關於點(1,0)及點(-1,0)對稱,所以f(x)不是奇函式也不是偶函式,故選項a、b錯;
又因為函式f(x)是週期t=2[1-(-1)]=4的周期函式,故選項c錯;
∵f(-x-1)=-f(x-1),
∴f(-x-1+4)=-f(x-1+4),即f(-x+3)=-f(x+3),
∴f(x+3)是奇函式,故選項d正確.
故選d.
點評:本題主要考查抽象函式中一些主條件的變形,來考查函式有關性質,方法往往是緊扣性質的定義.
請採納答案,支援我一下。
函式y=f(x)的定義域為r,若f(x+1)與f(x-1)都是奇函式,則
3樓:匿名使用者
函式定義域為r,
且f(x+1)與f(x-1)都是奇函式,
∴f(-x+1)=-f(x+1)..................1f(-x-1)=-f(x-1).....................2由1令-x+1=t得:f(t)=-f(2-t)............3由2令-x-1=t得:f(t)=-f(-2-t).........4由3、4得f(2-t)=f(-2-t)由此令-2-t=m得f(m)=f(4+m)
因此函式f(x)的週期為4,
∴由2可知:
f(-x+3)=-f(x+3)
∴f(x+3)為奇函式。d
函式f(x)的定義域為r,若f(x+1)與f(x-1)都是奇函式,則( )a.f(x)是偶函式b.f(x)是奇函
4樓:【紅領巾】奈椿
∵f(x+1)與baif(x-1)都是奇函式du,∴函式f(x)關於zhi點(dao1,0)及點(-1,專0)對稱,∴f(x)+f(2-x)=0,f(x)+f(-2-x)=0,故有f(2-x)=f(-2-x),屬
函式f(x)是週期t=[2-(-2)]=4的周期函式.∴f(-x-1+4)=-f(x-1+4),f(-x+3)=-f(x+3),
f(x+3)是奇函式.故選d
函式f(x)的定義域為r,若f(x+1)與f(x-1)都是奇函式,則
5樓:用香薇仇婭
答案是c
f(x+1)是奇函式,則f(x+1)=-
f(-x+1)..........(1)
f(x-1)是奇函式,則f(x-1)=-f(-x-1)............(2)
由(1)得f(x)=f((x-1)+1)=-f(-(x-1)+1)=-f(2-x)
由(2)得f(x)=f((x+1)-1)=-f(-(x+1)-1)=-f(-x-2)
所以,f(2-x)=f(-x-2),所以f(x+2)=f(x-2),f(x+4)=f(x),即f(x)是以4為週期的函式
f(x-1)是奇函式,f(x+3)=f(x-1)也是奇函式
6樓:匿名使用者
f(x-1)是奇函式難道不能得出f(x+3)是奇函式?
這個根本不能,樓主不理解奇函式、偶函式都是對定義域中的任意「x」而言的,比如 f(x-1)是奇函式 指的是,把這個函式中的x換成-x,函式值也變為原來的相反數,即:f(-x-1)=-f(x-1)(如果還不理解,就令f(x-1)=g(x)再去理解)
本題解法:
∵f(x-1)是奇函式
∴f(-x-1)=-f(x-1)令x-1=t,則f(-2-t)=-f(t)
f(x+1)是奇函式
∴f(-x+1)=-f(x+1),令x+1=t,則f(2-t)=-f(t)
則f(-2-t)=f(2-t)
而括號內的數相差4,即相差4的兩個數的函式值相等,故函式的週期為4即f(x+4)=f(x)
不知樓主的答案是怎麼回事?難道抄錯了?
7樓:藏文彥務俐
解:函式f(x)的定義域為r,
由已知函式f(x
+1)是奇函式,所以任取x∈r,有f(-x+1)=-f(x
+1)1
;由已知函式f(x
–1)也是奇函式,所以任取x∈r,有f(-x–1)=-f(x
–1)2
;在1式中把x用x
–1代入可得f(2–x)
=-f(x)3
;在2式中把x用x
+1代入可得f(-2–x)
=-f(x)4
;由3,4可得f(2–x)
=f(-2
–x),把x用-2
–x代入可得f(x+4)
=f(x),所以函式
f(x)是以4
為週期的
周期函式。
8樓:僧醉波俎越
f(x+1)在r上是奇函式,f(x+1)=-f(-x-1)。。。。。。。。。(1)
同理f(x-1)=-f(-x+1)................(2)
有(2)式知:f(x+1)=-f(-x+3)由(1)式可得f(-x-1)=-f(-x+3)即f(x)=f(x+4)
所以函式y=f(x)為週期為4的周期函式
f(x-1)是奇函式
得f(x+3)是奇函式
9樓:賽修德宣從
f(x+1)與f(x-1)都是奇函式,
那麼f(x+1)=-f(-x+1),
f(x-1)=-f(-x-1)把此式中的x換成-x得:f(-x-1)=-f(x-1)=f(x+1)
令x+1=t
那麼f(-t)=f(t)
所以是偶函式,選a
10樓:閎綺梅說鯨
選b。f(x+1)=-f(-x-1)
f(x-1)=-f(1-x)
又,(x+1+(-x-1))/2=0
(x-1+(1-x))/2=0
f(x+1)+f(-x-1)=o
f(x-1)+f(1-x)=0
所以,f(x)以原點為對稱軸
所以,選b
11樓:猶爾冬歷雍
f(-x+1)=-f(x-1)
f(-x-1)=-f(x+1)
f(-x-3)=-f(x-1)=f(-x+1)f(x+1)=f(x-3)
所以f(
x)的週期為4
f(-x+3)=f(-x-1)=-f(x+1)=-f(x-3)所以f(x+3)是奇函式
12樓:呼延芷珊九善
選擇df(x+1)是奇函式,則f(-
x+1)=-f(x+1)
f(x-1)是奇函式,則f(-x-1)=-f(x-1)==>>>
f[-(x+2)-1]=-f[(x+2)-1]=-f(x+1)則:f(-x+1)=f[-(x+2)-1]=f(-x-3)
==>>>
f(-x+1)=f(-x-3)
===>>>
f(x+1)=f(x-3)==>>>
f[(x-1)+1]=f[(x-1)-3]===>>>f(x)=f(x-4) t=4
f(-x+1)=-f(x+1) ===>>>f[-(x+4)+1]=-f[(x+4)+1] ==>>>f(-x-3)=-f(x+5) f(x+5)=f(x-3)
所以:f(-x-3)=-f(x-3),即:f(x+3)是奇函式。
13樓:天空的期望
值相等性質不一定相同吧!所以d不對. 在你的推到中有f(x)=-f(-x-2) 又f(x)為奇函式,所以有-f(-x-2)=f(x+2)得c
14樓:學富四車
答案絕對是d,樓主解得對。
這個題是09高考全國1第11題
15樓:匿名使用者
那麼f(x-1)=f(x+3) 這個不能推出f(x+3)是奇函式啊
16樓:修秀雲貿靜
你這個解得不對。
f(x+1)為奇函式,∴f(x)關於(1,0)對稱。這個對稱是奇函式的中心對稱,然後-x和x+2關於(1,0)對稱,所以f(-x)
=-f(x+2),
ps:就像是如果g(x)是個奇函式,那麼g(x)關於(0,0)中心對稱,然後-x和x關於(0,0)是對稱點,所以g(-x)=-g(x)
然後f(x-1)為奇函式,f(x)關於(-1,0)對稱,f(-x)=-f(x-2),
所以f(x+4)
=f(x),f(x)是週期為4的周期函式。
-然後f(x+3)
=f[(x+1)+2]
=-f(-x-1)
=-f(-x-1+4)
=-f(-x+3),f(x+3)為奇函式,這樣才對ps:你把f(x+3)看做g(x),奇函式是指g(-x)=-g(x),要是f(x+3)
=-f(-x-3),那麼f(x)就成了奇函式了
17樓:褚素花鞠雁
-x關於1的對稱是1*2-(-x)=x+2
然後根據奇函式的定義f(-x)=-f(x+2)
18樓:敬德文麻橋
詳細解答
因為f(x+1)向右平移1個單位得到f(x),所以f(x+1)對稱中心(0,0)移到(1,0).
f(x+1)為奇函式,∴f(x)關於(1,0)對稱。這個對稱是奇函式的中心對稱,然後-x和x+2關於(1,0)對稱,所以f(-x)
=-f(x+2), 也可寫成f(x+2)
= -f(-x)後面用
然後f(x-1)為奇函式,f(x)關於(-1,0)對稱,f(-x)=-f(x-2),
所以由上面2個結論得: -f(x+2)
= -f(x-2)
所以 f(x+2)
=f(x-2),用x+2換x
所以f(x+4)
=f(x),f(x)是週期為4的周期函式。
因為f(x+2)
= -f(-x) (前面的結論)
然後x+1換x 得
f(x+1+2)
=f(x+3)
=-f(-(x+1))
= -f(-x-1)
=-f(-x-1 +4週期 )
=-f(-x+3),
所以f(x+3)=
-f(-x+3),
所以f(x+3)為奇函式,
這樣才對
函式f(x)的定義域為r,若f(x+1)與f(x-1)都是奇函式.則( )a.f (x)是偶函式b.f (x)是奇
19樓:手機使用者
∵f(x+1)與f(x-1)都是
抄奇函式,
∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),∴函式f(x)關於點(1,0)及點(-1,0)對稱,所以f(x)不是奇函式也不是偶函式,故選項a、b錯;
又因為函式f(x)是週期t=2[1-(-1)]=4的周期函式,故選項c錯;
∵f(-x-1)=-f(x-1),
∴f(-x-1+4)=-f(x-1+4),即f(-x+3)=-f(x+3),
∴f(x+3)是奇函式,故選項d正確.
故選d.
函式f(x)的定義域為r,若f(x+1)與f(x-1)都是奇函式,則( )
20樓:匿名使用者
函式f(
baix)的定du
義域為r,若
21樓:火爆工科男
反例 a:sin(2πx)
b:cos(πx/2)
22樓:匿名使用者
函式fx的定義域為R,若fx1與fx1都是奇
答案d分析 首先由奇函式性質求f x 的週期以及對稱中心,然後利用所求結論來分別判斷四個選項即可 解答 f x 1 與f x 1 都是奇函式,f x 1 f x 1 f x 1 f x 1 函式f x 關於點 1,0 及點 1,0 對稱,所以f x 不是奇函式也不是偶函式,故選項a b錯 又因為函式...
f x 的定義域,怎麼求f x 1 的定義域。已知f(2x 1)的定義域為,怎麼求f(x 3)的定義域
1.f x 的定義域 4,9 令 4 x 1 9 得 3 x 10 所以f x 1 的定義域是 3,10 2.已知f 2x 1 的定義域為 1,3 1 x 3 3 2x 1 5 所以f x 的定義域是 3,5 令 3 x 3 5 得 6 x 2 所以f x 3 的定義域是 6,2 f x 的定義域 ...
若函式fx是定義域R的奇函式,且f x 在零到0到正無窮上有零點。則fx的零點個數為多少
肯定3個啊,x 0肯定是一個,0到負無窮肯定有一個對稱的0點 由題意知 x 0,時有唯一的x0 使得f x0 0 當 x1 0 時,則x1 0,因f x 為奇函式,所以有 f x1 f x1 已知x 0,時有唯一的x0 使得f x0 0若f x1 0,則f x1 0 可推出x1 x0,且在 x1 0...