1樓:匿名使用者
是 ∫ √(1+x2) / √(1-x2) dx 吧?
這個積分
的答案是個第二內
類橢圓積分。
答案是 e( arcsinx | -1 ) + ce( x | m )是第二類橢圓積分的符號容。
2樓:匿名使用者
這個積分積不出來,我用數學軟體算過了。
3樓:鐵血丹心賽雲哥
個人能力有限,筆算算不出來,用matleb計算得到的結果是個橢圓積分,就是沒有解析形勢的
求不定積分∫1/(x+根號(1-x^2))dx? 5
4樓:天使的星辰
|∫dx/[x+√(1-x^2)]
令x=sint
原式=∫cost/(sint+cost) dt=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt
=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt
=1/2ln|sint+cost|+1/2t+ct=arcsinx
cost=√1-x^2
所以原式=1/2ln|x+√(1-x^2)|+1/2arcsinx+c
5樓:最愛他們姓
不好意思,這個問題太深奧了,沒有接觸過呢,沒能給到你滿意的答覆,只能生活愉快,謝謝!
求不定積分dx/x根號下(x^2-1)
6樓:drar_迪麗熱巴
解題過程如下圖:
在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式 及 的原函式存在。
2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式 的原函式存在, 非零常數。
7樓:曉龍修理
|^^結果為:-arcsin(1/|x|)+c
解題過程如下:
設t=1/x
則dx=-dt/t^2
∴原式=∫1/[x(x^2-1)^(1/2)]dx
=-∫(dt/t^2)*t|t|/(1-t^2)
=-sgn(t)∫dt/(1-t^2)^(1/2)
=-sgn(x)arcsint+c
=-arcsin(1/|x|)+c
求函式積分的方法:
如果一個函式f在某個區間上黎曼可積,並且在此區間上大於等於零。那麼它在這個區間上的積分也大於等於零。如果f勒貝格可積並且幾乎總是大於等於零,那麼它的勒貝格積分也大於等於零。
作為推論,如果兩個 上的可積函式f和g相比,f(幾乎)總是小於等於g,那麼f的(勒貝格)積分也小於等於g的(勒貝格)積分。
函式的積分表示了函式在某個區域上的整體性質,改變函式某點的取值不會改變它的積分值。對於黎曼可積的函式,改變有限個點的取值,其積分不變。
對於勒貝格可積的函式,某個測度為0的集合上的函式值改變,不會影響它的積分值。如果兩個函式幾乎處處相同,那麼它們的積分相同。如果對 中任意元素a,可積函式f在a上的積分總等於(大於等於)可積函式g在a上的積分,那麼f幾乎處處等於(大於等於)g。
如果在閉區間[a,b]上,無論怎樣進行取樣分割,只要它的子區間長度最大值足夠小,函式f的黎曼和都會趨向於一個確定的值s,那麼f在閉區間[a,b]上的黎曼積分存在,並且定義為黎曼和的極限s。
8樓:不是苦瓜是什麼
令x=sint
原式=∫
cost/(sint+cost) dt
=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt
=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt
=1/2ln|sint+cost|+1/2t+c
t=arcsinx
cost=√1-x^2
所以原式=1/2ln|x+√1-x^2|+1/2arcsinx+c
不定積分的公式
1、∫ a dx = ax + c,a和c都是常數
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + c
4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c
7、∫ sinx dx = - cosx + c
8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c
9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c
10、∫ secx dx =ln|cot(x/2)| + c = (1/2)ln|(1 + sinx)/(1 - sinx)| + c = - ln|secx - tanx| + c = ln|secx + tanx| + c
9樓:匿名使用者
都是正確的,原函式的表示不唯一
10樓:匿名使用者
arcsecx = arccos1/x = π/2 - arcsin1/x
所以 arcsecx +c 跟 -arcsin1/x +c 是一致的。。。
11樓:想要共享者
答案應為arccos1/x+c,這與你書上的答案不矛盾,帶入不同,它帶的是csct,但你的x=sect=1/cost,故t=arccos1/x而不是arc1/cosx
12樓:匿名使用者
=ln [x+(x^2+1)^(1/2)] + c
求x/根號下1-x^2的不定積分
13樓:不是苦瓜是什麼
^∫ x/√(1-x2) dx
=(1/2)∫copy 1/√(1-x2) d(x2)
=-(1/2)∫ 1/√(1-x2) d(-x2)
=-√(1-x2) + c
不定積分的公式
1、∫ a dx = ax + c,a和c都是常數
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + c
4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c
7、∫ sinx dx = - cosx + c
8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c
9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c
14樓:116貝貝愛
結果為:-√
bai(1-x2) + c
解題過程如du
下:原式=∫zhi x/√(1-x2) dx=(1/2)∫ 1/√(1-x2) d(x2)=-(1/2)∫ 1/√(1-x2) d(-x2)=-√(1-x2) + c
求函式積分的方法:專
設屬f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。
若f(x)在[a,b]上恆為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。
15樓:匿名使用者
∫來 x/√(1-x2) dx
=(1/2)∫ 1/√(1-x2) d(x2)=-(1/2)∫ 1/√(1-x2) d(-x2)=-√(1-x2) + c
【數學之美
源】團隊為您解答,bai若有不懂請追問,如果解du決問題zhi請點下面的「選為滿
dao意答案」。
16樓:匿名使用者
^湊微分法
dao∫x/√內(1-x^容2)dx =-1/2∫d(1-x^2)/√(1-x^2)
=-1/2∫[(1-x^2)^(-1/2)]d(1-x^2)=-1/2*2*(1-x^2)^(1/2)+c= -√(1-x^2)+c
根號下1-x^2的不定積分是多少
17樓:nice千年殺
結果bai是 (1/2)[arcsinx + x√(1 - x2)] + c
x = sinθ,dx = cosθ dθ
∫du √(1 - x2) dx = ∫ √(1 - sin2θ)(cosθ dθ) = ∫ cos2θ dθ
= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + c
= (arcsinx)/2 + (sinθcosθ)/2 + c
= (arcsinx)/2 + (x√(1 - x2))/2 + c
= (1/2)[arcsinx + x√(1 - x2)] + c
拓展資料zhi
這個根號下的不定dao積分,版符合模型∫√權a2-x2 dx,本題中就是a=1的情況。根據sin2x+cos2x=1,用sinθ替換x,然後被積函式,被積變數都要改變。
要做出如圖所示的三角形,更容易加深理解。最後要把中間變數θ變回x
18樓:匿名使用者
^這個題複目還是比如基礎的,一般可制以採用bai換元法求解設y=sqrt(1-x^du2),x=sin(t)dx=cos(t)dt
積分zhiydx=sqrt(1-x^2)dx=sqrt(1-sin(t)^2)cos(t)dt
=cos(t)^2dt=(cos(2t)+1)/2dt=1/4sin(2t)+1/2t+c
=1/2sin(t)cos(t)+1/2t+c=1/2xsqrt(1-x^2)+1/2asin(x)+c總結:帶有跟
dao號的積分可以嘗試用換元法進行求解。
19樓:匿名使用者
根號下宜昌二的不定積分是多少這個問題問的有點兒太模糊了所以說也沒法給你個正確的回答
20樓:匿名使用者
∫√(1+x^2 )dx
令x=tant,
原式=∫sect·
內dtant (注:本式還等於∫容sec3tdt)=sect·tant-∫tantdsect=sect·tant-∫tant·tantsectdt=sect·tant-∫(sec2t-1)sectdt=sect·tant-∫(sec3t-sect)dt=sect·tant-∫sec3tdt+∫sectdt=sect·tant-∫sect·dtant +∫sectdt所以2×∫sect·dtant=sect·tant-∫sect·dt=sect·tant-ln|sect+tant|+2c=x√(1+x2)-ln|x+√(1+x2)|+2c即原式=1/2x√(1+x2)-1/2ln|x+√(1+x2)|+c
x 2乘以根號下1 x 2的不定積分用分部積分法怎麼做
x tant,t arctanx dx sect 2 dt s x 2 根號 x 2 1 dx s tant 2 sect sect 2 dt s sect 2 1 sect 3 dt s sect 5 dt s sect 3 dt 首先求 sec 3 x dx 記i sec 3 x dx,則i s...
1 x 2 的不定積分是多少,1 1 x 2 的不定積分是多少
結果是 1 2 arcsinx x 1 x c x sin dx cos d 1 x dx 1 sin cos d cos d 1 cos2 2 d 2 sin2 4 c arcsinx 2 sin cos 2 c arcsinx 2 x 1 x 2 c 1 2 arcsinx x 1 x c拓展資...
x2根號下4x2的不定積分
令x 2sin dx 2cos d x 4 x dx 4sin 4 4sin 2cos d 4sin 2cos 2cos d 4 sin d 2 1 cos2 d 2 2 1 2 sin2 c 2 2sin cos c 2arcsin x 2 2 x 2 4 x 2 c 2arcsin x 2 x ...