根號下2x23dx的不定積分

2021-05-29 03:14:36 字數 4518 閱讀 2720

1樓:其樂無窮愛學習

設x=√2sint -π/2問!

計算不定積分:根號下(2-x^2)dx

2樓:demon陌

|x=根2*tant,t=arctan(x/根2),dx=根2*(sect)^2 dt

s根號下(2-x^2)dx

=s根2*sect*根2*(sect)^2 dt=2s(sect)^3dt

=sect*tant+ln|sect+tant|+c=x/根號下(2-x^2)+ln|1/根號下(1+1/2*x^2)+x/根2|+c

函式的和的不定積

分等於各個函式的不定積分的和,求不定積分時,被積函式中的常數因子可以提到積分號外面來。

求1/根號下a^2-x^2 dx a>0的不定積分

3樓:我是一個麻瓜啊

∫1/√(a^2-x^2)dx (a>0)=arcsin(x/a)+c。c為積分常數。

分析過程如下:

∫1/√(a^2-x^2)dx (a>0)=∫1/dx

=∫1/√[1-(x/a)^2]d(x/a)=arcsin(x/a)+c

擴充套件資料:求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c

4樓:匿名使用者

∫1/√(a^2-x^2)dx (a>0)=∫1/dx

=∫1/√[1-(x/a)^2]d(x/a)=arcsin(x/a)+c

注:^2——表示平方。

5樓:匿名使用者

x = asinθ、dx = acosθ dθ

∫[0→a] dx/[x + √(a² - x²)]

= ∫[0→π/2] acosθ/[asinθ + acosθ] dθ

= (1/2)∫[0→π/2] 2cosθ/[sinθ + cosθ] dθ

= (1/2)∫[0→π/2] [(sinθ + cosθ) - (sinθ - cosθ)]/(sinθ + cosθ) dθ

= (1/2)∫[0→π/2] dθ - (1/2)∫[0→π/2] d(- cosθ - sinθ)/(sinθ + cosθ)

= θ/2 |[0→π/2] + (1/2)∫ d(sinθ + cosθ)/(sinθ + cosθ)

= π/4 + (1/2)ln[sinθ + cosθ] |[0→π/2]

= π/4 + (1/2)

= π/4

6樓:夏小紙追

^繞x軸:

體積為y=2-x^2繞x旋轉的體積減去y=x^2繞x軸旋轉轉的體積v=2[∫pi*(2-x^2)^2dx-∫pi*(x^2)^2dx] 積分下限為0,上限為1,積分割槽間對稱,所以用2倍0,1區間上的

=pi*8/3

繞y軸:

2條曲線的交點為(-1,1),(1,1)

v=∫pi*ydy+∫pi*(y-2)dy第一個積分上下限為0,1,第二個積分上下限為1,2=pi

7樓:匿名使用者

這不是書上公式有的嗎?

=arcsin(x/a)+c

求x/根號下1-x^2的不定積分

8樓:不是苦瓜是什麼

^∫ x/√(1-x²) dx

=(1/2)∫copy 1/√(1-x²) d(x²)

=-(1/2)∫ 1/√(1-x²) d(-x²)

=-√(1-x²) + c

不定積分的公式

1、∫ a dx = ax + c,a和c都是常數

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

3、∫ 1/x dx = ln|x| + c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c

9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c

9樓:116貝貝愛

結果為:-√

bai(1-x²) + c

解題過程如du

下:原式=∫zhi x/√(1-x²) dx=(1/2)∫ 1/√(1-x²) d(x²)=-(1/2)∫ 1/√(1-x²) d(-x²)=-√(1-x²) + c

求函式積分的方法:專

設屬f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。

若f(x)在[a,b]上恆為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。

10樓:匿名使用者

∫來 x/√(1-x²) dx

=(1/2)∫ 1/√(1-x²) d(x²)=-(1/2)∫ 1/√(1-x²) d(-x²)=-√(1-x²) + c

【數學之美

源】團隊為您解答,bai若有不懂請追問,如果解du決問題zhi請點下面的「選為滿

dao意答案」。

11樓:匿名使用者

^湊微分法

dao∫x/√內(1-x^容2)dx =-1/2∫d(1-x^2)/√(1-x^2)

=-1/2∫[(1-x^2)^(-1/2)]d(1-x^2)=-1/2*2*(1-x^2)^(1/2)+c= -√(1-x^2)+c

1/根號下(x^2+1)的不定積分

12樓:小小芝麻大大夢

1/根號下(x^2+1)的不定積分解答過程如下:

其中運用到了換元法,其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。

擴充套件資料:

分部積分法

設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu

兩邊積分,得分部積分公式

∫udv=uv-∫vdu。 ⑴

稱公式⑴為分部積分公式.如果積分∫vdu易於求出,則左端積分式隨之得到.

分部積分公式運用成敗的關鍵是恰當地選擇u,v

一般來說,u,v 選取的原則是:

1、積分容易者選為v。

2、求導簡單者選為u。

例子:∫inx dx中應設u=inx,v=x

分部積分法的實質是:將所求積分化為兩個積分之差,積分容易者先積分。實際上是兩次積分。

有理函式分為整式(即多項式)和分式(即兩個多項式的商),分式分為真分式和假分式,而假分式經過多項式除法可以轉化成一個整式和一個真分式的和.可見問題轉化為計算真分式的積分.

可以證明,任何真分式總能分解為部分分式之和。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

13樓:碧海翻銀浪

有公式。

結果是:

ln(x+sqrt(x^2+1))+c

換元法求x根號下23x2dx的不定積分

x 2 3x dx 3 2 1 2 3x d 2 3x 3 2 2 2 3x 3 2 c 3 2 3x c。用換元法求不定積分 dx 根號 x 2 1 的三次方 dx 解題過程 設x tant,t arctanx dx 1 cost 2 dt 原式 1 tan 2t 1 3 1 cos 2t dt ...

求不定積分dx 9x 2 ,求不定積分 dx 9x 2 1

dx 9x 1 dx 3x 1 令3x tan 3 dx sec d 原式 1 3 sec d tan 1 1 3 sec sec d 1 3 sec d 1 3 ln sec tan c 1 3 ln 3x 9x 1 c 筆記 tan 3x,則sin 3x 3x 1 3x 9x 1 而cos 1 ...

根號下a2x2的不定積分怎麼求

解 a 2 x 2 dx 設x asint 則dx dasint acostdt a 2 x 2 a 2 a 2sint 2 a 2cost 2 a 2 x 2 dx acost acostdt a 2 cost 2dt a 2 cos2t 1 2dt a 2 4 cos2t 1 d2t a 2 4...