1樓:努力的大好人
利用矩陣的相似關係,求特徵值來判斷行列式和秩。具體的由來見下圖,下面需要做的工作,就是求c的特徵值和正交特徵向量,使其可以化為對角型,最後在成上b就可以了。
問一道線性代數解矩陣問題,求這些矩陣分別是怎麼進行的
2樓:匿名使用者
這是對對稱矩陣進行合同變換,當將矩陣a和同階單位矩陣拼成矩陣ae
後,先對整個矩陣進行列變換,再只對上方的矩陣a進行相應的行變換。
直到將矩陣a化為對角矩陣時,下方的單位矩陣就化為要求的線性變換的係數矩陣。
一道線性代數問題,一道線性代數的題目
增廣矩陣 a,b 1 2 1 3 4 1 1 3 5 5 0 1 2 2 k 行初等變換為 1 2 1 3 4 0 1 2 2 1 0 1 2 2 k 行初等變換為 1 0 5 7 6 0 1 2 2 1 0 0 0 0 k 1 行初等變換為 1 0 5 7 6 0 1 2 2 1 0 0 0 0 ...
一道線性代數行列式問題,一道線性代數的題目,對行列式A再取行列式A什麼
初等變換的 抄規則是左行右列襲,即左邊乘一個bai 矩陣,表示對du 觀察b矩陣與a的關bai系 b的行是由dua的行經過簡單交換zhi所得daob的列是由a的第3列的k倍加到第內2列所得所以有 p1ap2 b 初等矩容陣與初等變換的關係 注意p1並不是初等矩陣,但其作用類似初等矩陣,是由單位矩陣的...
一道線性代數的題目,一道大學線性代數題
1,2線性無關,1,2也線性無關!所以由向量 1,2生成的子空間 x1 1 x2 2 x1 1,2,1,0 x2 1,1,1,1 x1 x2,2x1 x2,x1 x2,x2 由向量 1,2生成的子空間 y1 1 y2 2 y1 2,1,0,1 y2 1,1,3,7 2y1 y2,y1 y2,3y2,...