線性代數二次型問題,關於線性代數二次型問題

2021-03-19 18:20:17 字數 2033 閱讀 6915

1樓:幽谷之草

xixj的係數的一半就是矩陣中ij位置的數。矩陣中ij位置和ji位置的元素相同。

有疑問請追問,滿意請選為滿意回答!

2樓:楓葉丨荻花

^比如說,你這個題,x1x2的係數是2,這個係數的一半1,就把1寫在二次型矩陣的 12和21 位置!依此類推!

當有平方 如4x1^2 就在主對角線第一個位置寫4。依此類推你這道題,沒有平方項,所以主對角線均為0

不知道,這樣解釋,清楚不?。。。。

關於線性代數二次型問題

3樓:尹六六老師

答案是3,

二次型的標準型為

f=y1²+y2²+y3²

其中y1=x1+x2

y2=x2-x3

y3=x3+x1

正的平方項有三個,

所以,正慣性系數為3

4樓:匿名使用者

解: 由於二次型f正定 <=> 對任意x≠0, f(x)>0.

根據題中f的結構, 恆有 f >= 0.

所以由f正定, 方程組

x1+ax2-2x3=0

2x2+3x3=0

x1+3x2+ax3=0

只有零解.

所以方程組的係數行列式不等於0.

係數行列式 =

1 a -2

0 2 3

1 3 a

= 2a+3a+4-9

=5(a-1).

所以 a≠1.

滿意請採納^_^

線性代數(二次型化為規範型問題)

5樓:匿名使用者

1. 是的, 一般是先化為標準型

如果題目不指明用什麼變換, 一般情況配方法比較簡單若題目指明用正交變換, 就只能通過特徵值特徵向量了2. 已知標準形後, 平方項的係數的正負個數即正負慣性指數配方法得到的標準形, 係數不一定是特徵值.

例題中平方項的係數 -2,3,4, 兩正一負, 故正負慣性指數分別為2, 1

所以規範型中平方項的係數為 1,1,-1 (兩正一負)

6樓:

有的二次型可以直接化為規範形,可省去化標準形的過程,比如f(x,y,z)=5x^2+2xy+y^2-4z^2,配方4x^2+(x+y)^2-4z^2。若令u=x,v=x+y,w=z,即x=u,y=u-v,z=w,則f=4u^2+v^2-4w^2,這是標準形。如果令u=2x,v=x+y,w=2z,則直接得規範形f=u^2+v^2-w^2。

由標準形知道正、負特徵值的個數,即可直接寫出規範形,至於標準形是用可逆的線性變換還是正交變換得到的,對特徵值的正負有影響嗎?

這個二次型的矩陣是對角矩陣,特徵值為-2,3,4,兩正一負,所以規範形即得

7樓:匿名使用者

問題1,二次型可以直接化為規範型。問題2.因為正負慣性指數是由標準型各項的係數決定的,所以一目瞭然。

是根據特徵值確定的,因為從二次型到標準型用代數的方法做,得到的標準型的各項係數就是特徵值。因為標準型的係數都是合同的,所以是······

線性代數為什麼講二次型?

8樓:匿名使用者

因為二次型是兩個矩陣相乘而得出的.

之所以叫它線性代數是因為

它是由線性方程引出的.

線性代數二次型問題

9樓:小樂笑了

該二次型,實際上是向量的內積,寫成向量內積的形式,等於(ax,ax)

寫成矩陣乘法的形式,等於

(ax)t(ax)

=xtat(ax)

=xt(ata)x

因此矩陣是ata,選c

10樓:電燈劍客

f(x)=||ax||^2=x^ta^tax

11樓:匿名使用者

運算過程截圖在上面了,c,d選項正好是把a的下標反過來的。

關於線性代數二次型問題,線性代數二次型化為規範型問題如何解決?

答案是3,二次型的標準型為 f y1 y2 y3 其中y1 x1 x2 y2 x2 x3 y3 x3 x1 正的平方項有三個,所以,正慣性系數為3 解 由於二次型f正定 對任意x 0,f x 0.根據題中f的結構,恆有 f 0.所以由f正定,方程組 x1 ax2 2x3 0 2x2 3x3 0 x1...

線性代數二次型,線性代數 二次型

錯誤1 特徵值 行列式 秩和跡的相同是a與b相同的必要條件。所謂的必要條件是專a與b相似能推屬出特徵值 行列式 秩和跡的相同。但是卻不能從特徵值 行列式 秩和跡的相同退出a與b相似。但能從從特徵值 行列式 秩和跡的不相同推出a與b不相似。錯誤2 兩個矩陣的的特徵值是 2,1,1,存在二重根1。所以要...

線性代數二次型化為標準型的問題,線性代數二次型化為標準型

畫紅線上面的那個矩陣就是x py矩陣形式,最後得出的二次型,y前面的係數其實是前面二次型矩陣所對應的四個特徵值 1,1,1,1.這種題一般都會要求你既寫出最後化成的標準型,也要寫出那個變換。紅線上面的x py就是那個變換,其中p是正交矩陣,p的由來就是通過求出二次型矩陣的特徵值和特徵向量,再把特徵向...