1樓:鍛鍊大腦
f'(x)=1+/x²-a/x=(x²-ax+1)/x²=[(x-a/2)²+1-a²/4]/x²
根據函式式,可知函式定義域為x>0;
所以:1、當1-a²/4≥0時,即-2≤a≤2,f'(x)>0,此時函式在定義域內單調遞增
2、當1-a²/4<0時,即a>2或a<-2,此時函式在x>a/2+√(a²-4)/2或x2或a<-2,此時函式在a/2-√(a²-4)/2 2樓:捂尺之師祖 定義域x.>0 f'(x)=1+x^(-2)-a/x=(x^2-ax+1)/x^2 g(x)=x^2-ax+1 △=a^2-4 -20 f(x)在(0,無窮)增 a<=-2 g(x)=0 函式f(x)=x2-alnx(a∈r)(1)討論f(x)的單調性(2)設函式y=f(x)在點a(1,f(1))處的切線為l 3樓:魘魅 (1)由已知得,f ′(x)=2x?a x=2x?ax ,且函式f(x)的定義域為(0,+∞), 當a≤0時,f′(x)≥0,故f(x)在(0,+∞)上單調遞增,當a>0時,令f′(x)=0,得x=?a2(舍),x=a2 .當x∈(0,a2 )時,f′(x)<0,f(x)單調遞減; 當x∈(a2 ,+∞)時,f′(x)>0,f(x)單調遞增.綜上,a≤0時,f(x)在(0,+∞)上單調遞增; a>0時,f(x)在(0,a2 )上單調遞減,在(a2 ,+∞)上單調遞增; (2)由f(1)=1,f′(1)=2-a知,f(x)在點a(1,f(1))處的切線l的方程為: y=(2-a)(x-1)+1. ∵l在點a處穿過函式y=f(x)的圖象, ∴令h(x)=f(x)-[(2-a)(x-1)+1]=x2-alnx-[(2-a)(x-1)+1]. 則h(x)在x=1兩邊附近的函式值異號,則x=1不是函式的極值點.而h′ (x)=2x?a x?(2?a)=(2x+a)(x?1)x.若1≠?a 2,則x=1和x=?a 2都是函式的極值點, ∴1=?a 2,即a=-2; (3)由題意知方程x2-alnx-ax=0有唯一實數解,設g(x)=2x?a x?a=2x ?ax?ax. 令g′(x)=0,解得x =a?a +8a4 (舍),x =a+a +8a4 .當x∈(0,x2)時,g′(x)<0,g(x)單調遞減,當x∈(x2,+∞)時,g′(x)>0,g(x)單調遞增.∴當x=x2時,g(x)取得最小值g(x2).則要使方程f(x)=ax有唯一實數解,只有g′(x)=0 g(x)=0,即 2x?ax ?a=0 x?alnx ?ax=0 ,即2alnx2+ax2-a=0. ∵a>0, ∴2lnx2+x2-1=0. 設u(x)=2lnx+x-1,則x>0時,u′(x)=2 x+1>0,u(x)單調遞增, ∴u(x)至多有一解, 又∵u(1)=0, ∴方程2alnx2+ax2-a=0的解為x2=1.即a+a +8a4 =1,解得a=1. 對於copy所有的x1 1,2 存在x0 1,2 使得g x1 f x0 的條件 是f x 在 1,2 上的值域a 是f x 在 1,2 上的值域的子集b,因為a 1,3 b a 2,2a 2 所以 a 2 1且2a 2 3即a 3 已知函式 f x x 2 2x,g x ax 2 a 0 若任意x... 學習不是一蹴而就 一朝一夕的事,尤其學習數學,要通過聽課 看書做題 總結歸納 糾錯再練等過程,一步一個腳印,踏踏實實地抓好每一個知識點,才能學好。學習函式,就是要掌握函式圖象,通過函式圖象,學習函式的定義域 值域 單調性 週期性 對稱性等性質。學習函式我的體會是,下點功夫 花些時間去畫圖 做函式圖象... y a 2x 2a x 1 a x 1 2 21 當a 1時,a 1 a 所以當 1 x 1時,即1 a a x a所以y的最大值為 a 1 2 2 14a 3或a 5 捨去 2 當0 所以當 1 x 1時,即a a x 1 a所以y的最大值為 1 a 1 2 2 14a 1 3或a 1 5 捨去 ...高中數學已知函式f x x 2 2x,g x ax 2 a0 ,若任意x1屬於
高中數學函式學習,如何學好高中數學函式
高中數學函式