1樓:匿名使用者
這不是簡單的一元方程麼?設x=|a|,則x=x^(n-1)的實數域解就是0或者1
線性代數問題:為什麼a的行列式乘以a的伴隨矩陣的行列式等於a的行列式的n-1次方。
2樓:drar_迪麗熱巴
|^aa*=|a|e;|aa*|=|a|^n
把|a|提到e裡面去,會發現從左上到右下的一列數都是|a|,所以|a|e=|a|^n。
矩陣行列式(determinant of a matrix)是指矩陣的全部元素構成的行列式,設a=(aij)是數域p上的一個n階矩陣,則所有a=(aij)中的元素組成的行列式稱為矩陣a的行列式,記為|a|或det(a)。
若a,b是數域p上的兩個n階矩陣,k是p中的任一個數,則|ab|=|a||b|,|ka|=kn|a|,|a*|=|a|n-1,其中a*是a的伴隨矩陣;若a是可逆矩陣,則|a-1|=|a|-1。
相關定理
定理1 設a為一n×n矩陣,則det(at)=det(a)[2]。
證 對n採用數學歸納法證明。顯然,因為1×1矩陣是對稱的,該結論對n=1是成立的。假設這個結論對所有k×k矩陣也是成立的,對(k+1)×(k+1)矩陣a,將det(a)按照a的第一行,我們有:
det(a)=a11det(m11)-a12det(m12)+-…±a1,k+1det(m1,k+1)。
定理2 設a為一n×n三角形矩陣。則a的行列式等於a的對角元素的乘積。
根據定理1,只需證明結論對下三角形矩陣成立。利用餘子式和對n的歸納法,容易證明這個結論。
3樓:盛夏曉光
aa*=|a|e
|aa*|=|a|^n
設a是n階矩陣,a*為a的伴隨矩陣 證明|a*|=|a|^(n-1)
4樓:demon陌
利用矩陣運算與行列式的性質證明,需要分為a可逆與不可逆兩種情況。具體回答如圖:
伴隨矩陣是矩陣理論及線性代數中的一個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷髮現與研究。
5樓:匿名使用者
如圖可以利用矩陣運算與行列式的性質證明,需要分為a可逆與不可逆兩種情況。
線性代數問題。證明行列式|a|=(n+1)a^n,求詳細解答。
6樓:匿名使用者
兩次,先按第一行
an=2aa[n-1]-b
b再按第一列展
開,b=a^2a[n-2]
即an=2aa[n-1]-a^2a[n-2](an-aa[n-1])=a(a[n-1]-aa[n-2])a1=2a,a2=3a^2,a2-aa1=a^2an-aa[n-1]=a^n
an=(n+1)a^n,a1滿足此式
線性代數矩陣乘法問題,線性代數矩陣相乘問題
你說反了,是 14 錯,15 對。14 如 a 1,0 1,0 則 a a,但 a 既不是 0 矩陣,也不是單位矩陣。15 設 a aij 其中 aij aji,考察 a 的第 1 行 第 1 列的元素,它是a11 a11 a12 a21 a1n an1 0,由於 a 對稱,因此上式即為 a11 a...
線性代數對稱矩陣a的對角化問題為什麼求出a的
你好 如果只是求一個可逆矩陣p使得 p 1 ap為對角陣,則只需要求出n個線性無關的內特徵向量就可以了容。當a是對稱陣時,如果要使p為正交陣,才需要對特徵向量做正交化與單位化。經濟數學團隊幫你解答,請及時採納。謝謝 性代數求可使某矩陣對角化的矩陣時,求出的給個向量是否一定需要單位化?或者其中一個單位...
求教線性代數矩陣的問題,求教線性代數逆矩陣的問題
你把我的回答截圖了,再做提問是什麼意思呢?頁連結 網頁連結 貌似和你說的 a為三階矩陣,b為一階矩陣 沒有任何關係,應該發錯圖了吧?對於矩陣的乘法,記住基本結論即可 a b的矩陣a,與b c的矩陣b相乘 ab得到的就是a c的矩陣 即兩個矩陣a和b相乘,其結果ab的行數,就是a的行數 你的a矩陣呢?...