請問這道高數二重積分極座標題是如何確定範圍的呢

2021-03-19 18:19:15 字數 2019 閱讀 3840

1樓:匿名使用者

最佳答案:經過原點的射線從與圖形相切開始,逆時針旋轉到與圖形相切到離開圖形為止就是θ的範圍,r就是在經過原點的射線與內側曲線交點到與外側曲線的交點,...

2樓:基拉的禱告

詳細完整過程rt所示……希望能幫到你解決問題

3樓:匿名使用者

是根據d的範圍看出來的。d是上半圓與y=-x所夾的區域。如圖從原點出發角度的範圍是-45到0.r的範圍可以由不等式得出。

大學高數二重積分化為極座標形式,θ的取值範圍怎麼確定

4樓:匿名使用者

你好!以這個圖為例子

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

很高興能回答您的提問,您不用新增任何財富,只要及時採納就是對我們最好的回報

。若提問人還有任何不懂的地方可隨時追問,我會盡量解答,祝您學業進步,謝謝。

如果問題解決後,請點選下面的「選為滿意答案」

學習高等數學最重要是持之以恆,其實無論哪種科目都是的,除了多書裡的例題外,平時還要多親自動手做練習,每種型別和每種難度的題目都挑戰一番,不會做的也不用氣餒,多些向別人請教,從別人那裡學到的知識就是自己的了,然後再加以自己鑽研的話一定會有不錯的效果。所以累積經驗是很重要的,最好的方法就是常來幫別人解答題目,增加歷練和做題經驗了!

5樓:匿名使用者

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

大學高數二重積分化為極座標形式,θ的取值範圍怎麼確定?

6樓:匿名使用者

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就

是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2

一道高數題,極座標二重積分可以先積θ出來嗎?

7樓:匿名使用者

因為rf(r)dr這個部分沒有θ,相對於θ來說這是個常數,所以可以提到積分號外面去,先求0到2π上θ的積分

8樓:良人當歸便好

那這個又怎麼解釋呢?

二重積分用極座標形式θ怎麼確定範圍,根據什麼,是d還是根據被積分的部分啊,極座標完全不太懂。 10

9樓:不是苦瓜是什麼

極座標r的範圍,可以畫一個從原點指向出來的箭頭,先穿越的曲線就是下限,後穿越的曲線就是上線。

角度θ的範圍就是看這個區域所在的象限範圍,解兩曲線的交點座標(x,y)後,角度θ=arctan(y/x),如圖中,角度就是由0變化到π/2。

1、原點(極點)在積分割槽域的內部,θ的範圍從0到2π;

2、原點(極點)在積分割槽域的邊界,θ的範圍從區域的邊界,按逆時針方向掃過去;

3、原點(極點)在積分割槽域之外,θ的範圍從區域的靠極軸的邊界,按逆時針方向掃過去。

10樓:后街老訞

沒有題不太好回答,θ的取值範圍一般是根據草圖確定的,直接通過直角座標系就可以得到,比如說被積區域是圓心在原點處的整個圓,那麼就取2派,若只取上半個圓就取0到派,等等,若是半徑為1 圓心在(0,1)處的整個圓,就取0到派,。這樣說就懂了吧。先理解好被積函式是1的時候,極座標是怎麼計算面積(被積函式是1)就懂了

11樓:木沉

極座標只是座標變換,雖然引數域發生了改變,但是被表示的點是不會變化的。

所以theta的範圍應該根據被積分的區域來定。

高數二重積分問題如圖這個二重積分的影象怎麼畫出來的求具體步驟

6.作變換x rcos y rsin 的逆變換,rdrd dxdy,積分割槽域如圖所示,4表示直線y x在第一象限的部分,r sec 即x 1,所以是0 x 1,0 y x,所以原式 0,1 dx 0,x f x 2 y 2 dy.高數問題如圖所示,求條件極值解方程組時該怎麼求呢?求具體步驟!有沒有...

利用極座標計算二重積分xydxdy,其中Dx

用換元法 x r cos a y r sin a sin x 2 y 2 dxdy r sin r 2 drda 其中r的積分限為 0,2 a的積分限為 0,2pai 接下來 2pai r sin r 2 dr pai sin r 2 d r 2 令t r 2,然後 pai sin t dt,其中積...

利用極座標計算下列二重積分 Dsin x

原式 來d rsinrdrd 8 3 自 16 d bai2 rsinrdr 16 du 2 rdcosr 16 rcosr 2 zhi 2 cosrdr 16 3 sinr 2 3 dao2 16 擴充套件資料 利用極座標計算二重積分的基本方法 計算二重積分的一般方法是先選擇適當的座標系,然後利用...