1樓:鋤禾夕陽
有沒有聽說過「
bai曹衝稱象」的故du事?想zhi知道大象的體dao重,但無法直接去稱它回,怎麼辦呢?聰明的答曹衝就想出一個辦法:
用石頭的重量代替大象的體重。這個故事給我們一個思想方法的啟發---先「化整為零」(把大象的體重用石頭質量來替代),再「積零為整」(石頭質量的累積就是大象體重)。
喜不喜歡吃饅頭?把小麥磨成面、再捏成饅頭的過程就是「化整為零」、「積零為整」的過程,也就是個「微積分」的過程。
定積分定義
2樓:穆子澈想我
定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。
這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
定積分性質
1、當a=b時,
2、當a>b時,
3、常數可以提到積分號前。
4、代數和的積分等於積分的代數和。
5、定積分的可加性:如果積分割槽間[a,b]被c分為兩個子區間[a,c]與[c,b]則有
又由於性質2,若f(x)在區間d上可積,區間d中任意c(可以不在區間[a,b]上)滿足條件。
6、如果在區間[a,b]上,f(x)≥0,則
7、積分中值定理:設f(x)在[a,b]上連續,則至少存在一點ε在(a,b)內使
3樓:縱橫豎屏
設函式f(x) 在區間[a,b]上連續,將區間[a,b]分成n個子區間[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。
其中:a叫做積分下限,b叫做積分上限,區間[a, b]叫做積分割槽間,函式f(x)叫做被積函式,x叫做積分變數,f(x)dx 叫做被積表示式,∫ 叫做積分號。
擴充套件資料:
定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。
這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
一般定理:
定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。
定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。
定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。
牛頓-萊布尼茨公式
定積分與不定積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:
用文字表述為:一個定積分式的值,就是原函式在上限的值與原函式在下限的值的差。
正因為這個理論,揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。
4樓:吉儉門巳
定積分是以平面圖形的面積問題引出的。如右上圖,y=f(x)為定義在[a,b〕上的函式,為求由x=a,x=b,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b〕分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。
把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b〕上的定積分,表為即稱[a,b〕為積分割槽間,f(x)為被積函式,a,b分別稱為積分的上限和下限。當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:
這是c牛頓萊布尼茲公式。
5樓:賽士恩光雀
定積分正式名稱是黎曼積分,是一個數學定義。分劃的引數趨於零時的極限,叫做這個函式在這個閉區間上的定積分。
不定積分是一組導數相同的原函式,定積分則是一個數值。求一個函式的原函式,叫做求它的不定積分;求一個函式相應於閉區間的一個帶標誌點分劃的黎曼和關於這個分劃的引數趨於零時的極限,叫做這個函式在這個閉區間上的定積分。
不定積分(indefinite
integral)
即已知導數求原函式。若
f′(x)=f(x),那麼[
f(x)+c]′=f(x).(c∈
r).也就是說,把f(x)積分,不一定能得到
f(x),因為
f(x)+c的導數也是f(x)(c是任意常數)。所以f(x)積分的結果有無數個,是不確定的。我們一律用
f(x)+c代替,這就稱為不定積分。即如果一個導數有原函式,那麼它就有無限多個原函式。
定積分(definite
integral)
定積分就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由
y=0,x=a,x=b,y=f(x)所圍成圖形的面積。這個圖形稱為曲邊梯形,特例是曲邊三角形。
6樓:匿名使用者
定積分 (definite integral)
定積分就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由 y=0,x=a,x=b,y=f(x)所圍成圖形的面積。
設函式f(x) 在區間[a,b]上連續,將區間[a,b]分成n個子區間[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各區間的長度依次是:△x1=x1-x0, △x2=x2-x1, …, △xn=xn-xn-1。
在每個子區間(xi-1,xi]中任取一點ξi(1,2,...,n),作和式
。設λ=max(即λ是最大的區間長度),則當λ→0時,該和式無限接近於某個常數,這個常數叫做函式f(x) 在區間[a,b]的定積分,記為
:其中:a叫做積分下限,b叫做積分上限,區間[a, b]叫做積分割槽間,函式f(x)叫做被積函式,x叫做積分變數,f(x)dx 叫做被積表示式,∫ 叫做積分號。
之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數, 而不是一個函式
7樓:匿名使用者
1/3*b^3+b-(1/3*a^3+a)
8樓:龔梅年芝
定義:設函式f(x)在[a,b]上有界,在[a,b]中任意插入若干分點,a=x0區間[a,b]分成n個小區間,各個小區間的長度為δxi=xi-x(i-1)(這裡i-1為下標,而且i為小於等於n的正整數),在各個小區間上任取一點ξi(ξi∈δxi),做乘積f(ξi)δx並做和∑(n,
i=1)f(ξi)δx
記λ=max,
如果不論多[a,b]如何分也不論ξi取δxi中的何位置,只要當λ->0時,和s總趨於確定的極限,這個極限便是f(x)在區間[a,b]上的定積分,記為
解釋:因為定積分可以看為一個曲邊梯形的面積
將一個曲邊梯形梯形的面積分為n個長方形計算,其中,每一個長方形的底為δxi,該長方形的高通過對應法則(即y軸上的投影)為f(ξi),則長方形的面積就應該是f(ξi)δx,曲邊梯形的面積近似值就是∑(n,
i=1)f(ξi)δx
這時,如果我們取λ=max中的最大值而且將它趨於零,意味著所有的元素都應該趨於零(最大值趨於零看成其他數值的低階無窮小理解),那麼面積的值將越來越精確。(趨於零,這裡長方形的寬越來越小(可以理解為有面積的線段之和)),根據極限的定義,可以寫成一個和的極限形式,這便是定積分的概念
當δxi越來越小的時候,面積表示越來越精確
此外,題主給出的題目答案為:-1/6,可以先求t(t-1)的原函式,即為(t^3)/3-(t^2)/2,代入積分上下線相減得到結果-1/6
這裡使用到了牛頓萊布尼茨公式。如果要用定積分的定義求,會相對比較麻煩。
利用定積分的定義計算下列積分
9樓:匿名使用者
您好,答案如圖所示:
很高興能回答您的提問,您不用新增任何財富,只要及時採納就是對我們最好的回報
。若提問人還有任何不懂的地方可隨時追問,我會盡量解答,祝您學業進步,謝謝。
☆⌒_⌒☆ 如果問題解決後,請點選下面的「選為滿意答案」
定積分的概念
10樓:會固體
概念如下:
設函式f(x) 在區間[a,b]上連續,將區間[a,b]分成n個子區間[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。
可知各區間的長度依次是:△x1=x1-x0,在每個子區間(xi-1,xi]中任取一點ξi(1,2,...,n),作和式
設λ=max(即λ是最大的區間長度),如果當λ→0時,積分和的極限存在,則這個極限叫做函式f(x) 在區間[a,b]的定積分,記為
幾何意義是:
由 y=0,x=a ,x=b,y=f(x)所圍成圖形的面積,即下圖中的s區域面積。
擴充套件資料
定積分與不定積分之間的關係:
若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式)。
一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。
一個連續函式,一定存在定積分和不定積分。
若只有有限個間斷點,則定積分存在。
若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
用定積分的定義求極限,利用定積分定義求極限
lim 1 n 1 n n n 0.1 xdx 2 3 x 3 2 2 3 利用定積分定義求極限 2 舉例說明 1 原式 lim1 n 1 1 i n 2 0 1 dx 1 x 2 arctanx 0 1 4 2 原式 0 1 sin x dx cos x 0 1 2 定積分定義求極限 分子齊 都是...
如何理解定積分定義中的極限符號,定積分前面的極限符號,什麼意思,這公式怎麼求的啊?
上面的符號,i,無非就是要說明在第 i 個小區間內取值。有本事它再寫下去啊!它沒有能耐再寫下去了,只能糊弄到這兒,黔驢就只能有這麼一下兩下。而 ti 無非就是想說每個劃分的小區間partition,或 all interval,或說mesh,也就是 小小的間隔的寬度趨向於0。寫一個n 表示小區間的個...
下限a上限bxdx ab 根據定積分定義計算
答案是 b a 2 因題幹不全,條件不足,無法解答。設a 積分幾何意義是和x軸所圍的面積,x軸下方是負,上方是正 所以a 1,b 2積出所有負面積部分 積分取得最小值,即為0,區間關於y x 1 x 2 的對稱軸對稱 y x 1 x 2 x 2 x 2 x 1 2 2 5 2 因此a b 1 2 2...