什麼是對數,什麼叫做對數?

2022-02-28 12:35:47 字數 7614 閱讀 1714

1樓:00知識分子

記住口訣

ln x=y 就是e的y次方等於x

lg x=y 就是10的y次方等於x

loga x=y 就是a的y次方等於x

你說10的對數怎麼算,假設以10為底數吧,即a=10,x=10你想,10的多少次方等於10呢,顯然答案是1再舉個例子,lne^2 ,e的多少次方等於e^2?顯然是2

什麼叫做對數?

2樓:匿名使用者

1對數的概念

如果a(a>0,且a≠1)的b次冪等於n,即ab=n,那麼數b叫做以a為底n的對數,記作:logan=b,其中a叫做對數的底數,n叫做真數.

由定義知:

①負數和零沒有對數;

②a>0且a≠1,n>0;

③loga1=0,logaa=1,alogan=n,logaab=b.

特別地,以10為底的對數叫常用對數,記作log10n,簡記為lgn;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logen,簡記為lnn.

2對數式與指數式的互化

式子名稱abn指數式ab=n(底數)(指數)(冪值)對數式logan=b(底數)(對數)(真數)

3對數的運算性質

如果a>0,a≠1,m>0,n>0,那麼

(1)loga(mn)=logam+logan.

(2)logamn=logam-logan.

(3)logamn=nlogam (n∈r).

問:①公式中為什麼要加條件a>0,a≠1,m>0,n>0?

②logaan=? (n∈r)

③對數式與指數式的比較.(學生填表)

式子ab=nlogan=b名稱a—冪的底數

b— n—a—對數的底數

b— n—運

算 性質am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈r)logamn=logam+logan

logamn=

logamn=(n∈r)

(a>0,a≠1,m>0,n>0)

難點疑點突破

對數定義中,為什麼要規定a>0,,且a≠1?

理由如下:

①若a<0,則n的某些值不存在,例如log-28?

②若a=0,則n≠0時b不存在;n=0時b不惟一,可以為任何正數?

③若a=1時,則n≠1時b不存在;n=1時b也不惟一,可以為任何正數?

為了避免上述各種情況,所以規定對數式的底是一個不等於1的正數?

解題方法技巧

1 (1)將下列指數式寫成對數式:

①54=625;②2-6=164;③3x=27;④13m=5?73.

(2)將下列對數式寫成指數式:

①log1216=-4;②log2128=7;

③log327=x;④lg0.01=-2;

⑤ln10=2.303;⑥lgπ=k.

解析由對數定義:ab=n?logan=b.

解答(1)①log5625=4.②log2164=-6.

③log327=x.④log135.73=m.

解題方法

指數式與對數式的互化,必須並且只需緊緊抓住對數的定義:ab=n?logan=b.(2)①12-4=16.②27=128.③3x=27.

④10-2=0.01.⑤e2.303=10.⑥10k=π.

2 根據下列條件分別求x的值:

(1)log8x=-23;(2)log2(log5x)=0;

(3)logx27=31+log32;(4)logx(2+3)=-1.

解析(1)對數式化指數式,得:x=8-23=?

(2)log5x=20=1. x=?

(3)31+log32=3×3log32=?27=x?

(4)2+3=x-1=1x. x=?

解答(1)x=8-23=(23)-23=2-2=14.

(2)log5x=20=1,x=51=5.

(3)logx27=3×3log32=3×2=6,

∴x6=27=33=(3)6,故x=3.

(4)2+3=x-1=1x,∴x=12+3=2-3.

解題技巧

①轉化的思想是一個重要的數學思想,對數式與指數式有著密切的關係,在解決有關問題時,經常進行著兩種形式的相互轉化.

②熟練應用公式:loga1=0,logaa=1,alogam=m,logaan=n.3

已知logax=4,logay=5,求a=〔x·3x-1y2〕12的值.

解析思路一,已知對數式的值,要求指數式的值,可將對數式轉化為指數式,再利用指數式的運算求值;

思路二,對指數式的兩邊取同底的對數,再利用對數式的運算求值?

解答解法一∵logax=4,logay=5,

∴x=a4,y=a5,

∴a=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

解法二對所求指數式兩邊取以a為底的對數得

logaa=loga(x512y-13)

=512logax-13logay=512×4-13×5=0,

∴a=1.

解題技巧

有時對數運算比指數運算來得方便,因此以指數形式出現的式子,可利用取對數的方法,把指數運算轉化為對數運算.4

設x,y均為正數,且x·y1+lgx=1(x≠110),求lg(xy)的取值範圍.

解析一個等式中含兩個變數x、y,對每一個確定的正數x由等式都有惟一的正數y與之對應,故y是x的函式,從而lg(xy)也是x的函式.因此求lg(xy)的取值範圍實際上是一個求函式值域的問題,怎樣才能建立這種函式關係呢?能否對已知的等式兩邊也取對數?

解答∵x>0,y>0,x·y1+lgx=1,

兩邊取對數得:lgx+(1+lgx)lgy=0.

即lgy=-lgx1+lgx(x≠110,lgx≠-1).

令lgx=t, 則lgy=-t1+t(t≠-1).

∴lg(xy)=lgx+lgy=t-t1+t=t21+t.

解題規律

對一個等式兩邊取對數是解決含有指數式和對數式問題的常用的有效方法;而變數替換可把較複雜問題轉化為較簡單的問題.設s=t21+t,得關於t的方程t2-st-s=0有實數解.

∴δ=s2+4s≥0,解得s≤-4或s≥0,

故lg(xy)的取值範圍是(-∞,-4〕∪〔0,+∞).

5 求值:

(1)lg25+lg2·lg50+(lg2)2;

(2)2log32-log3329+log38-52log53;

(3)設lga+lgb=2lg(a-2b),求log2a-log2b的值;

(4)求7lg20·12lg0.7的值.

解析(1)25=52,50=5×10.都化成lg2與lg5的關係式.

(2)轉化為log32的關係式.

(3)所求log2a-log2b=log2ab由已知等式給出了a,b之間的關係,能否從中求出ab的值呢?

(4)7lg20·12lg0.7是兩個指數冪的乘積,且指數含常用對數,

設x=7lg20·12lg0.7能否先求出lgx,再求x?

解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2

=2lg5+lg2·(1+lg5)+(lg2)2

=lg5·(2+lg2)+lg2+(lg2)2

=lg102·(2+lg2)+lg2+(lg2)2

=(1-lg2)(2+lg2)+lg2+(lg2)2

=2-lg2-(lg2)2+lg2+(lg2)2=2.

(2)原式=2log32-(log325-log332)+log323-5log59

=2log32-5log32+2+3log32-9

=-7.

(3)由已知lgab=lg(a-2b)2 (a-2b>0),

∴ab=(a-2b)2, 即a2-5ab+4b2=0.

∴ab=1或ab=4,這裡a>0,b>0.

若ab=1,則a-2b<0, ∴ab=1( 捨去).

∴ab=4,

∴log2a-log2b=log2ab=log24=2.

(4)設x=7lg20·12lg0.7,則

lgx=lg20×lg7+lg0.7×lg12

=(1+lg2)·lg7+(lg7-1)·(-lg2)

=lg7+lg2=14,

∴x=14, 故原式=14.

解題規律

①對數的運演算法則是進行同底的對數運算的依據,對數的運演算法則是等式兩邊都有意義的恆等式,運用法則進行對數變形時要注意對數的真數的範圍是否改變,為防止增根所以需要檢驗,如(3).

②對一個式子先求它的常用對數值,再求原式的值是代數運算中常用的方法,如(4).6

證明(1)logan=logcnlogca(a>0,a≠1,c>0,c≠1,n>0);

(2)logab·logbc=logac;

(3)logab=1logba(b>0,b≠1);

(4)loganbm=mnlogab.

解析(1)設logan=b得ab=n,兩邊取以c為底的對數求出b就可能得證.

(2)中logbc能否也換成以a為底的對數.

(3)應用(1)將logab換成以b為底的對數.

(4)應用(1)將loganbm換成以a為底的對數.

解答(1)設logan=b,則ab=n,兩邊取以c為底的對數得:b·logca=logcn,

∴b=logcnlogca.∴logan=logcnlogca.

(2)由(1)logbc=logaclogab.

所以 logab·logbc=logab·logaclogab=logac.

(3)由(1)logab=logbblogba=1logba.

解題規律

(1)中logan=logcnlogca叫做對數換底公式,(2)(3)(4)是(1)的推論,它們在對數運算和含對數的等式證明中經常應用. 對於對數的換底公式,既要善於正用,也要善於逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.

7 已知log67=a,3b=4,求log127.

解析依題意a,b是常數,求log127就是要用a,b表示log127,又3b=4即log34=b,能否將log127轉化為以6為底的對數,進而轉化為以3為底呢?

解答已知log67=a,log34=b,

∴log127=log67log612=a1+log62.

又log62=log32log36=log321+log32,

由log34=b,得2log32=b.

∴log32=b2,∴log62=b21+b2=b2+b.

∴log127=a1+b2+b=a(2+b)2+2b.

解題技巧

利用已知條件求對數的值,一般運用換底公式和對數運演算法則,把對數用已知條件表示出來,這是常用的方法技巧?8

已知x,y,z∈r+,且3x=4y=6z.

(1)求滿足2x=py的p值;

(2)求與p最接近的整數值;

(3)求證:12y=1z-1x.

解析已知條件中給出了指數冪的連等式,能否引進中間量m,再用m分別表示x,y,z?又想,對於指數式能否用對數的方法去解答?

解答(1)解法一3x=4y?log33x=log34y?x=ylog34?2x=2ylog34=ylog316,

∴p=log316.

解法二設3x=4y=m,取對數得:

x·lg3=lgm,ylg4=lgm,

∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.

由2y=py, 得 2lgmlg3=plgmlg4,

∴p=2lg4lg3=lg42lg3=log316.

(2)∵2=log391,所以真數大的對數就大,問題轉化為比較兩個真數的大小,這裡超前應用了對數函式的單調性,以鼓勵學生超前學習,自覺學習的學習積極性.(3)解法一令3x=4y=6z=m,由於x,y,z∈r+,

∴k>1,則 x=lgmlg3,y=lgmlg4,z=lgmlg6,

所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,

故12y=1z-1x.

解法二3x=4y=6z=m,

則有3=m1x①,4=m1y②,6=m1z③,

③÷①,得m1z-1x=63=2=m12y.

∴1z-1x=12y.

9 已知正數a,b滿足a2+b2=7ab.求證:logma+b3=12(logma+logmb)(m>0且m≠1).

解析已知a>0,b>0,a2+b2=7ab.求證式中真數都只含a,b的一次式,想:能否將真數中的一次式也轉化為二次,進而應用a2+b2=7ab?

解答logma+b3=logm(a+b3)212=

解題技巧

①將a+b3向二次轉化以利於應用a2+b2=7ab是技巧之一.

②應用a2+b2=7ab將真數的和式轉化為ab的乘積式,以便於應用對數運算性質是技巧之二.12logma+b32=12logma2+b2+2ab9.

∵a2+b2=7ab,

∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),

即logma+b3=12(logma+logmb).

思維拓展發散

1 數學興趣小組專門研究了科學記數法與常用對數間的關係.設真數n=a×10n.其中n>0,1≤a<10,n∈z.

這就是用科學記數法表示真數n.其科學性體現在**?我們只要研究數n的常用對數,就能揭示其中的奧祕.

解析由已知,對n=a×10n取常用對數得,lgn=n+lga.真數與對數有何聯絡?

解答lgn=lg(a×10n)=n+lga.n∈z,1≤a<10,

∴lga∈〔0,1).

我們把整數n叫做n的常用對數的首數,把lga叫做n的常用對數的尾數,它是正的純小數或0.

小結:①lgn的首數就是n中10n的指數,尾數就是lga,0≤lga<1;

②有效數字相同的不同正數它們的常用對數的尾數相同,只是首數不同;

③當n≥1時,lgn的首數n比它的整數位數少1,當n∈(0,1)時,lgn的首數n是負整數,|n|-1與n的小數點後第一個不是0的有效數字前的零的個數相同.

師生互動

什麼叫做科學記數法?

n>0,lgn的首數和尾數與a×10n有什麼聯絡?

有效數字相同的不同正數其常用對數的什麼相同?什麼不同?

2 若lgx的首數比lg1x的首數大9,lgx的尾數比lg1x的尾數小0?380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.

解析①lg0.203 4=1?308 3,即lg0.

203 4=1+0.308 3,1是對數的首數,0.308 3是對數的尾數,是正的純小數;②若設lgx=n+lga,則lg1x也可表出.

解答設lgx=n+lga,依題意lg1x=(n-9)+(lga+0.380 4).

又lg1x=-lgx=-(n+lga),

∴(n-9)+(lga+0?380 4)=-n-lga,其中n-9是首數,lga+0?380 4是尾數,-n-lga=-(n+1)+(1-lga),-(n+1)是首數1-lga是尾數,所以:

n-9=-(n+1)

lga+0.380 4=1-lga?n=4,

lga=0.308 3.

∴lgx=4+0.308 3=4.308 3,

∵lg0.203 4=1.308 3,∴x=2.034×104.

∴lg1x=-(4+0.308 3)=5.691 7.

取對數是什麼意思,對資料取對數是什麼意義

如果a n b,那麼logab n.其中,a叫做 底數 b叫做 真數 n叫做 以a為底b的對數 相應地,函式y logax叫做對數函式.零和負數沒有對數.底數a為常數,其取值範圍是 0,1 1,對資料取對數是什麼意義 對取對數以後的資料進行線性迴歸,其前面的參數列示的就是百分比變化率 dlnx dx...

用excel怎麼做對數曲線圖,excel怎麼用製作對數正態分佈的概率密度分佈曲線圖表

1.首先右擊 縱座標 點選 設定座標軸格式 2.在開啟的對話方塊中選擇 座標軸選項 在其中找到 對數刻度 點選其前面的方框 3.點選之後會彈出對話方塊,不用管它,點確定就ok。然後根據資料填入相應的對數底,一般填 10 就行 4.之後點選確認就行,縱座標就好按照對數顯示,一般是 1 10 100 1...

為什麼對數的底數要大於,為什麼對數的底數要大於

對數式是由指數式a b n轉化而來 對數式的底數相當於對應指數式的底數,當指數b取任意實數時,為使指數式恆有意義,這裡規定a 0且a 1所以對數式中的底數a也是a 0且a 1 這是指數函式與對數函式的定義決定的。指數 y a x,這裡 a 0 且 a 1。可知永遠有 y 0。對數 loga y x,...