1樓:鮮今
向量m=(x1/a,y1/b)n=(x2/a,y2/b)且m*n=0
得到x1x2/a^2 + y1y2/b^2=0
(1)a點座標為(a,0),即x1=a,y1=0
代入上式得x2=0,
點b在橢圓上,代入橢圓方程,y2=b 或-b
點b的座標(0,b),(0,-b)
(2)om=cosθoa+sinθob
=cosθ(x1,y1)+sinθ(x2,y2)
=(cosθ*x1+sinθ*x2 , cosθ*y1+sinθ*y2)
m的座標(cosθ*x1+sinθ*x2 , cosθ*y1+sinθ*y2)
代入橢圓方程的左半部分
(cosθ*x1+sinθ*x2 )^2/a^2+(cosθ*y1+sinθ*y2)^2/b^2
=cos^2θ(x1^2/a^2+y1^2/b^2)+sin^2θ(x1^2/a^2+y1^2/b^2)+2sinθcosθ(x1x2/a^2 + y1y2/b^2)
=cos^2θ+sin^2θ=1
滿足橢圓方程,m在橢圓上
(3)設線段pq的中點為點n(xn,yn),直線oa:y=(y1/x1)*x
只要能夠證明點n的座標滿足直線方程,即可。
p(xp,yp),q(xq,yq)
xn=(xp+xq)/2,yn=(yp+yq)/2
所以只需證明(yp+yq)/(xp+xq)=y1/x1
向量pq‖ob ,即(yp-yq)/(xp-xq)=y2/x2
兩式相乘,得到(yp^2-yq^2)/(xp^2-xq^2)=y1y2 / x1x2
x1x2/a^2 + y1y2/b^2=0
y1y2 / x1x2= -b^2/a^2
所以只需證明(yp^2-yq^2)/(xp^2-xq^2)=-b^2/a^2
xp^2/a^2+yp^2/b^2=1
xq^2/a^2+yq^2/b^2=1
兩式相減,得到(xp^2-xq^2)/a^2+(yp^2-yq^2)/b^2=0
(yp^2-yq^2)/(xp^2-xq^2)=-b^2/a^2
所以往回推,可以證出結論。
2樓:匿名使用者
(1)m*n=0得出(x1*x2)/a^2+(y1*y2)/b^2=0……(1)
x2^2/a^2+y2^2/b^2=1……(2)聯立1,2得b(0,b)
(2)令x1=acosa ,x2=bsina ,x2=acosb ,y2=bsinb,則m的座標是(acosacosθ+acosbsinθ,bsinacosθ+bsinbsinθ),帶入x^2/a^2+y^2/b^2,可得cosθ^2+2(cacbcθsθ+sasbsθcθ)+sinθ^2,既1+2(×),現在證明(×)=0,既cosacosb+sinasinb=0,此式就是m*n=0
即證明!!!
(3)由(2)知cosacosb+sinasinb=0,又由橢圓中的內圓(自己查資料)可知道,oa與ob垂直,既問題被簡化為oa是否能垂直平分pq,如果可以的話oq=op(長度),易知可以的只要是問題(1)中情況就好!!!!證畢
你自己分析下吧,沒想到我大三還記得這個啊!!!!你努力吧!!!數學一定要愛啊!!!我雖然學金融但是還是愛死數學了!!!
3樓:mc艹
我去~.... 這也行..
已知橢圓c:x^2/a^2+y^2/b^2=1(a>b>0)的離心率為√3/2
4樓:澄元
^雙曲線x^2-y^2=1的漸近線為y=x所以以這四個交點為頂點的四邊形是菱形
設p為在第一象限交點,p(x,y)
根據面積得p(2√2,2√2)
e=√3/2
e^2=3/4=a^2/b^2
b^2=1/4a^2
帶入:x^2/a^2+y^2/b^2=1
得a^2=40
b^2=10
剩下的會了吧
其中有什麼不懂歡迎提問
可能計算會出錯,自己再算算。
5樓:侵略地球
解:(1)設橢圓的半焦距為c
則有:a²=b²+c²
a²+b²=5
c/a=√3/2
解得:a=2
b=1c=√3
所以橢圓的方程為:(x²/4)+y²=1
(2)【方法一】
設交點p(x1,y1),q(x2,y2)
當直線l的斜率不存在時,直線l的方程為x=-1則s=√3/2
當直線l的斜率存在時
設其方程為y=k(x+1)(k≠0),聯立橢圓方程:(x²/4)+y²=1
得:(4k²+1)x²+8k²x+4(k²-1)=0兩個根為x1,x2
x1+x2=-8k²/(4k²+1)
x1•x2=4(k²-1)/(4k²+1)則|pq|=[√(1+k²)]|x1-x2|=[√(1+k²)] ×[4√(3k²+1)/(4k²+1) ](k≠0)
又原點到直線l的距離d=|k|/(1+k²)所以s=(1/2)|pq|•d
=(1/2)√(1+k²)×[4√(3k²+1)/(4k²+1) ]×[|k|/(1+k²)]
=2√(3k²+1)k²/(4k²+1 ) (k≠0)=2√(3k^4+k²)/(16k^4+8k²+1)=2√[3/16-(8k²+3)/16(16k^4+8k²+1)]<2•√3/4
=√3/2
所以,當直線l的方程為x=-1時,△poq面積最大;
做第二問的基本思路就是將直線方程與橢圓方程聯立,消去y滿意請採納。
6樓:匿名使用者
不會ejvkfngmh
已知橢圓c:x^2/a^2+y^2/b^2=1(a>b>0)的一個頂點為a(2,0)
7樓:匿名使用者
由a(2,0)可得:a=2,
離心率e=c/a=c/2=√2/2,
∴c=√2,
b=√(a^2-c^2)=√2,
∴橢圓方程為:x^2/4 +y^2/2=1,
設m(x1,y1),n(x2,y2)
聯立直線橢圓,得:
(1+2k²)x² - 4k²x+2k²-4=0
x1+x2=4k²/(1+2k²),x1x2=(2k²-4)/(1+2k²)
|mn|=√[(x1-x2)²+(y1-y2)²]
=√=√[(x1-x2)² + k²(x1-x2)²]
=√[(1+k²)(x1-x2)²]
=√=√[(1+k²)(24k²+16)/(1+2k²)² ]
a點到直線距離為
h=|k|/√(1+k²)
∴s=(1/2)·h·|mn|
=(1/2)·[|k|/√(1+k²)] ·√[(1+k²)(24k²+16)/(1+2k²)² ]
=(1/2)·|k|·√[(24k²+16)/(1+2k²)²]
=√10/3
即:|k|·√[(24k²+16)/(1+2k²)²] = 2√10/3
兩邊平方,得:(24k^4 + 16k²)/(1+2k²)² = 40/9
即:7k^4 - 2k² - 5=0
解得:k²=1或-5/7 (捨去)
∴k²=1
∴k=±1
A(x1,y1) B(x2,y2)是一次函式y kx 2(k
k 0,一次函式y kx 2中y隨x的增大而減小,若x1 x2,則y1 y2,若x1 x2,則y1 y2,故x1 x2與y1 y2始終異號,故 x1 x2 y1 y2 0 a x1,y1 b x2,y2 是一次函式y kx 2 k 0 影象上的不同的兩點,若t x1 x2 y1 y2 答案bai c...
若Ax1,y1,Bx2,y2,Cx3,y3是反比
解 反比例函式y k 1x 的比例係數k2 1 0,該反比例函式的圖象如圖所示,該圖象在第 一 三象限,在每個象限內,y隨x的增大而減小,又 x1 x2 0 x3,y3 y1 y2 故選 a 初中數學 已知a x1,y1 b x2,y2 c x3,y3 是反比例函式y 2 x上的三點 答案 a。反比...
已知三點Ax1,y1,Bx2,y2,Cx3,y
設p點 p,q d ap 2 bp 2 cp 2 p x1 q y1 p x2 q y2 p x3 q y3 min,解法一 d對p和q求偏導數,設其為0,即可求出p,q值,結合實際情況,即可判斷在該點是否是d的最小值。偏d 偏p 2 p x1 2 p x2 2 p x3 2 x1 x2 x3 0,...