1樓:金科路
z=f(x,x/y),x與y無關
因此,z'x
=f'1*(x)'+f'2*(x/y)'
=f'1+f'2/y
z''xy
=(z'x)'y
=(f'1+f'2/y)'y
=f''11(x)'+f''12*(x/y)'+(f'2/y)'
=-xf''12/y^2 + (-f'2/y^2+(f''21*(x)'+f''22*(x/y)')/y)
=(-x/y^2)f''12-(1/y^2)f'2-(x/y^3)f''22
其中,z'x,z'y表示z分別對x,y求偏導,f'1,f'2表示f 分別對第一個位置和第二個位置求導,
f''11,f''12,f''21,f''22分別表示f'1對第一和第二位置,以及f'2對第一和第二位置求導
2樓:清華紅牛
記:u=xy^2 v=x^2y z=f(u,v)
求:∂²z/∂x², ∂²z/∂y², ∂²z/∂x∂y
∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂v/∂x)=(∂f/∂u)y^2+2xy(∂f/∂v) (1)
∂²z/∂x²=y^2+2y(∂f/∂v)+2xy=y^2+2yf'v+2xy
= y^4f''uu+4xy^3f''uv+4x^2y^2f''vv+2yf'v
∂²z/∂y²=x^4f''vv+4x^3yf''uv+4x^2y^2f''uu+2xf'u
∂²z/∂x∂y (1)式對y求導即可.此外:f''uv表示:∂²f/∂u∂v,其它類同。
設函式z=f(x,x/y),f具有二階連續偏導數,求az/ax, a^2z/axay
3樓:
z=f(x,x/y),x與y無關
因此,z'x
=f'1*(x)'+f'2*(x/y)'
=f'1+f'2/y
z''xy
=(z'x)'y
=(f'1+f'2/y)'y
=f''11(x)'+f''12*(x/y)'+(f'2/y)'
=-xf''12/y^2 + (-f'2/y^2+(f''21*(x)'+f''22*(x/y)')/y)
=(-x/y^2)f''12-(1/y^2)f'2-(x/y^3)f''22
其中,z'x,z'y表示z分別對x,y求偏導,f'1,f'2表示f 分別對第一個位置和第二個位置求導,
f''11,f''12,f''21,f''22分別表示f'1對第一和第二位置,以及f'2對第一和第二位置求導
有不懂歡迎追問
4樓:匿名使用者
設:u=u(x)=x v(x,y)=x/y
z=f(u,v)
∂z/∂x=∂f/∂x=(∂f/∂u)(du/dx)+(∂f/∂v)(∂v/∂x)
= ∂f/∂u + (∂f/∂v)/y (1)
∂²z/∂x∂y=(∂²f/∂u∂v)(∂v/∂y)=-x(∂²f/∂u∂v)/y^2 (2)
如果給定f(u,v)的具體函式形式,那麼根據(1)、(2)可算出偏導數的具體結果。
設函式z=z(x,y)由方程f(x-y,y-z)=0所確定,f為可微函式,證明∂z/∂x+∂z/∂
5樓:
令u=x-y, v=y-z
則f(u,v)=0
兩邊對x求偏導:
∂f/∂u*∂u/∂x+∂f/∂v*∂v/∂x=0即∂f/∂u+∂f/∂v*(-∂z/∂x)=0, 得:∂z/∂x=(∂f/∂u)/(∂f/∂v)=f'u/f'v
兩邊對y求偏導:
∂f/∂u*∂u/∂y+∂f/∂v*∂v/∂y=0即∂f/∂u*(-1)+∂f/∂v(1-∂z/∂y)=0,得:∂z/∂y=(f'v-f'u)/f'v
因此有∂z/∂x+∂z/∂y=(f'u+f'v-f'u)/f'v=f'v/f'v=1
設函式z=x^2yf(x^2-y^2,xy),求z/x,zy
6樓:匿名使用者
z = x²y f (x²-y²,xy)
求:∂z/∂x,∂z/∂y=?
解:令:u(x,y)=x²-y²,v(x,y)=xy,w(x,y)=x²y
因此:z = w f(u, v)
∂z/∂x=∂w/∂x f(u,v)+w ∂f/∂x
=2xy f(u,v)+w [(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂v/∂x)]
=2xy f(u,v)+w [2x(∂f/∂u)+y(∂f/∂v)]
=2xy f(x²-y²,xy) + x²y (2x ∂f/∂u + y ∂f/∂v)
類似方法求取:
∂z/∂y=∂w/∂y f(u,v)+w ∂f/∂y
=x² f(u,v)+w [(∂f/∂u)(∂u/∂y)+(∂f/∂v)(∂v/∂y)]
=x² f(u,v)+w [-2y(∂f/∂u)+x(∂f/∂v)]
=x² f(x²-y²,xy) - x²y (2y ∂f/∂u - x ∂f/∂v)
如果給定:f(u,v)的具體函式表示式,求出f 對u、v的偏導數之後,將得到最終的結果。
舉一例:設: f(u,v) = u+v,其餘的u、v、w的表示式不變,
那麼:∂z/∂x=2xy f(x²-y²,xy) + x²y (2x ∂f/∂u + y ∂f/∂v)
=2xy(x²-y²+xy)+ x²y(2x+y) //: 沒做整理
∂z/∂y=x² (x²-y²+xy) - x²y (2y-x) //: 也沒整理。
設z1xyy,求zy求過程謝謝
z 復 1 xy y lnz yln 1 xy 兩邊同時對y求偏導,得 制1 z bai z y ln 1 xy duy 1 1 xy x1 z z y ln 1 xy xy 1 xy 所以zhi z y z ln 1 xy xy 1 xy dao 1 xy y ln 1 xy xy 1 xy 有沒...
設函式yyx由函式2xyxy所確定,求y
代入 x 0,則原函式為 2 0 y,即 y 1.y是由 2 xy x y 所確定。對方程兩邊關於x求導數,得 y xy 2 xy ln2 1 y 代入 x 0,y 1 則 y 0 ln2 1.大學數學題目理解。設函式y y x 由xy e y 2 x 0確定。這句話是什麼意思。20 就是一個方程確...
設方程eyxye確定了函式yyx,求yx
e y xy e 對x求導 e y y y xy 0 e y x y y y y e y x 當x 0時,y 1 y 1 e 0 1 e 設函式y y x 由方程e y xy e所確定,求y 0 用微分 當x 0時,y 1。等式兩邊對x求導 y e y y xy 0,所以y y x e y y y ...