1樓:小螺號
這是一道數學題,還是需要代入資料才能夠求解。
2樓:匿名使用者
^(1)y」+3y』抄+2y=xe^-x
特解襲 y*=ax+b(這是錯的bai,最起碼得有個e^-x吧?du)
(2)y」+3y』+2y=(x² + 1)e^-x特解y*=x(ax²+bx+c)e^-x
-------------------------------1、xe^-x前的多項zhi式為daox,所以設qm(x)是qm(x)=ax+b,由於-1是特徵方程的單根,所以特解為
y*=x(ax+b)e^(-x)
2、(x²+1)e^-x前的多項式為二次,所以設qm(x)是qm(x)=ax²+bx+c,由於-1是特徵方程的單根,所以特解為y*=x(ax²+bx+c)e^-x
把特解帶入原微分方程,待定係數法求出引數a、b、c。
學習高等數學需要具備哪些基礎知識 200
3樓:小小孩子
你只是初中畢業,沒讀過高中,那你學習高等數學會很吃力,理解不了,建議你還是先學習高中代數,幾何,函式等,先打好初高中數學基礎再進一步學習高等數學。
4樓:超級小小小小超
學這玩意兒幹啥?你學這個又沒有用。要是真想學 你先把高中的學了再說不然你念天書呢!
5樓:百度使用者
得學會怎麼求導數,求積分。如果這兩個不會,基本上高數寸步難行
6樓:匿名使用者
先學哪個都可以,二者同時也未嘗不可,知識點交叉互用並不多,高數下冊會用到一點線代裡的知識,例如,克拉默法則對於高數解方程組有一定幫助,行列式運算在高數下冊向量積會用到。
7樓:柴晨欣臺濮
想考試的話,學好函式基本就能過去了,其實數學
很有意思,但是高等數學的思想並不一樣,這點得注意,高中的數學都是一種絕對的,有限的概念,高等數學需要一種想像力,別硬學,會把腦子用壞的。高等數學大多用來解決實際問題,除了鍛鍊思維以外。
高等數學都學什麼?
8樓:demon陌
高等數學主要內容包括:極限、微積分、空間解析幾何與向量代數、級數、常微分方程。
指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
9樓:愛要一心
這是目錄:
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
我剛剛上完大一,高數主要就是學微積分,因為大學裡的其他學科很多都要用到微積分,所以要會算,那些微積分的公式都要很熟悉的。 先是學導數 ,微分就是在式子後面乘一個dx,而積分就是微分的逆運算。
10樓:匿名使用者
一、函式 極限 連續
二、一元函式微分學
三、一元函式積分學
四、微分方程初步
五、向量代數 空間解析幾何
六、多元函式微分學
七、多元函式積分學(包括曲線積分、曲面積分)八、無窮級數
它的資料和講義,網上有很多。
11樓:匿名使用者
主要就是定積分還有微積分方面的知識
12樓:天涯客
函式,極限,連續
一元函式微分
一元函式積分
多元函式微分
多元函式積分
常微分方程
怎樣很好的學習高等數學?
13樓:匿名使用者
大學的學習生活是我們每個人都向往的,可是殊不知大學的學習內容並不比我們高中所學知識簡單多少,就好比大學的高等數學,是一門讓很多同學都頭疼的學科,深奧的知識和複雜的公式讓很多同學在高等數學面前都繳械投降。其實我們大可不必擔心,我們要明白一些問題掌握一些技巧來讓高等數學變得不再是個難題。
首先就是我們要明白一點,到了大學以後,我們都到了一個統一的起點,所以我們要拋開以前的觀念,就算是以前我們對數學不感興趣,或者我們以前的數學成績很差,我們也不應該放棄自己,在新學期裡一定要下定決心攻克這個難題,每堂課都認真聽講,付出的努力肯定是有回報的。
其次就是我們一定要學會合作學習。大學裡有很多比我們優秀的人,我們一定要利用好這個資源,如果有什麼不懂的或者是以前有遺漏的知識,我們都可以麻煩同學來給我們進行補習,多用點時間和精力,總會看到成果的。
最重要的一點就是我們一定要有信心,不能因為以前知識的不紮實就放棄自己,克服自己的恐懼心理,只要是自己下了足夠的辛苦,就算是最後的結果不盡人意我們也能夠給自己一個合理的答卷,做到自己問心無愧。
14樓:帥帥的火龍果二
聽課之前一定要看書,要耐心仔細地把書上內容看兩遍。很多時候你看書的速度都趕上不老師的講課速度,而老師兩小時的講課,很可能講三十四十頁。所以要抓緊時間看書。
這樣才有利於上課的時候加深印象。老師講完之後,最好再結合筆記再看一遍書。
看完之後,要做書上的習題,大學學不學在你,所以得有自覺性,書上的習題一定要全做!有專門指導習題的老師,但能自己想的就自己想,反覆想。
找一本習題集,大體做一遍。如果你想將來考研的話。那麼你都做一遍。
找一本另外的教材,學完一章之後再跟你的教材對照讀一下。看有沒有收穫。只需要一本就夠了,目的是開闊眼界,多看無益,把自己的書弄的爛熟才是重點。看不懂書,不要硬做題,用處不大。
15樓:匿名使用者
這也是我比較苦惱的問題,當年上學的時候也被高等數學折磨瘋了。特別涉及到了微積分,確實是一臉懵啊。不過還是可以通過向同學請教,還有參考習題的答案來努力提升自己的水平。
課前預習也是非常重要的環節,如果少了這個環節,那高等數學就不可能學好。因為學時有限,老師有時候一節課能講課本幾十頁的內容,不預習根本就跟不上啊。
16樓:山水有喵嗚
假如要求是瞭解高等數學,科普目的,那麼看這本書就可以了。
《歐姆社學習漫畫:漫畫微積分》
假如要求再高一些,不僅希望瞭解大概內容,還希望會用一些東西。那麼可以找一些針對職高專科或者是文科的教材。那些教材知識點不多,但是都會講最重要,常見的知識點。
假如是應對考試,看自己的教材和老師上課的講義。
假如是考研,同濟的《高等數學》是必要的,還需要歷年的真題,以及一些你喜歡的輔導書。
假如是考數學系的研究生,推薦裴禮文的《數學分析中的典型問題和方法》和謝惠民 的《數學分析習題課講義》,謝的書難度極高,做題的話最好和同學一起討論,不然可能永遠做不出。
17樓:藍水燮
不要心懷牴觸,從頭開始補課,融會貫通就可以了
。我上大學的時候學的最好的就是高等數學,曾經考過滿分,高等數學其實並不難,而且學進去之後你會發現很有趣。因為現在很多人都把高等數學魔幻化了,所以造成很多人看到高等數學的書就頭疼,其實你就把他想的容易點,像小學最基礎的數學,一點一點的把基礎打好,再聽講就不會覺得像天書了。
18樓:一葉長青啦
要學好基礎,對三角函式,幾何,代數,概率等高中課程要精通,最起碼要熟練掌握基本的理論,而高等數學就是進一步深入學習這些東西
培養自己的邏輯思維,邏輯思維對學習高等數學非常重要,就是分析問題的能力,循序漸進,層層相扣的剖析問題的能力
要多記錄,對高等數學重要的公式,理論要準備一個小本子,包括課堂筆記等,記錄下來隨身帶著,熟練記憶,經常溫習,能記在腦海裡
要掌握學習技巧,任何學習都是有技巧的,如果找不到技巧,盲目學習之後事倍功半,起不到很好的效果
19樓:葉梓葉青
如果你高中數學就不及格,建議你去重新學學習一些高中比較重要的公式,因為大學學科一定會用到。到來了上課的時候 ,你需要全神貫注的聽老師的講解,可能你當時會了,但是之後依然會忘記,所以你要多做一些題目。最好與剛上的課息息相關的,基礎性比較強的,最後複習的時候再做一些加強的題目。
20樓:今天就中了是的
第一首先在上課之前自己要把這一張的內容先看一下,然後上課的時候早點去,佔一個前面的位置,上課的時候認真一點,在課下多看看上課沒聽懂的地方,記記那些公式和性質定理,然後把課後的題做一做,不懂得可以去問問同學,或者是在qq上問問老師,只要肯下功夫,一定能學好的。
21樓:配角解釋
首先,上課的時候就是你要讓自己在狀態哦。認真聽講,不會的問題還是要和同學討論和向老師請教。然後就是你要自己努力,然後在課下多多做題。
還有就是記憶一些必備的公式,如果你的興趣確實不高,你可以在考試前努努力,別掛就行了。
22樓:匿名使用者
學習數學是講究方法的,數學講究邏輯和一定的數學規律。數學從基礎知識上就一貫相承,每個定律和公式都是在原有基礎上才能更好地理解。如果學習起來很吃力,那麼基礎知識肯定是不紮實,要想學習好數學,那麼就得把缺失的基礎補上。
23樓:飄零久生師友
我覺得像學習高數這種比較難得科目就要認真一點了,因為你不學你是真的不會,你學了還有可能不會,更何況不認真呢。所以還是建議,上課之前好好的預習一下今天要學的知識,然後今天的課結束了之後,也要好好的再複習一下今天學過的知識,這個真的很重要的。所以高數這個事情不能偷懶還是按部就班的學習吧。
24樓:咪啊咪
數學上課的時候一定要認真的聽老師講思路,不要只顧著抄筆記或者是跟別人聊天,數學難在思維的解題方式。你道題沒有思路就無法走下去。你日常可以多練一些題來鍛鍊你的解題思維,不要循規蹈矩,固守一個解題思路。
還可以向老師諮詢,沒事可以跟同學一起**一下。
25樓:深海不吱
高等數學不好的情況下,要麼抽時間自學,要麼找人教你。自學挺考驗一個人的自制力的,只有自制力好的人,才可能在自學中學到東西。此外,如果找同學教你,一定要找個有耐心的,畢竟你的基礎不好,中間可能要費很多口舌,一般人都不太願意做這種事情。
高等數學學習完了,還有更難的數學麼?
26樓:匿名使用者
線性代數,概率統計,這兩門是理工科本科時必上的,比高數難。
如果是數學專業的,那就多了,微分方程是單獨一門,實變函式,複變函式,泛函分析,運籌學,近世代數等,很多。
高數是最簡單的。微積分在工程上用的很多,需要看你是什麼專業而定。
如果上碩士,泛函分析、矩陣分析、數理方程是必學的,很難。
27樓:寒宵丶
高等數學是最簡單的數學了吧。大一學的,後來學線性代數,高等代數,常微分方程,數學分析教程,數學建模,實變函式與泛函分析,複變函式論,以後還要學近世代數,點集拓撲,運籌學,emmm……加油
28樓:匿名使用者
有啊,概率論,數理統計,數分,運籌學,數學建模,離散數學,計量經濟學,近似代數等等。我覺得在大學裡面打比賽很有用,像那個建模,還有好多比賽都可以用到,主要要學的精,淺學學不到啥的
二階常係數線性微分方程求解,二階常係數非齊次線性微分方程特解怎麼設?
微分算方法應用於尋求非齊次微分方程的特解,相應的齊次微分方程的由特徵方程的一般解 第二階或二階可被轉化成 和變數方法 一階的分離,則非齊次方程求解常數相對簡單的常見變體 來解決。2.公式轉換 使.將改寫微分方程形式,即特定的解決方案。這樣的結果 常係數 微分方程,直接以重寫指數d的推導中,常係數不變...
求助關於二階常係數非齊次線性微分方程求特解形式問題
2 問題二 當為自由項f x pn x 時,特解y 形式又如何設呢?書中一道例題求y 2y 3x 1的一個特解,裡面說因為f x 3x 1是一次多項式,所以設y ax 2 bx c,為什麼設成2元1次形式呢?您所 查 看的帖 子來 源 於 k a o y a n c o m 考 研 論 壇 因為 0...
可降階的二階微分方程和二階常係數線性微分方程的區別
對於n階齊次線性微分方程,注意,不一定是常係數,也不一定是二階,但一定是齊次。因為右邊是0,所以如果y1,y2,yn是方程的解,c1y1 c2y2 yn也是方程的解。自己去證明。對於你說的二階常係數齊次線性微分方程,delta 0時,有y1 e alphax cos betax i sinbetax...