1樓:匿名使用者
∫∫(1-(x^2+y^2))dxdy=∫∫dxdy-∫∫(x^2+y^2)dxdy
第2個積分用極座標:
∫∫r^3drdθ
=∫(0,π)dθ∫(0,2asinθ)r^3dr=∫(0,π)[4a^4(sinθ)^4]dθ=8a^4∫(0,π/2)[(sinθ)^4]dθ=8a^4(3/4)(1/2)(π/2)=3πa^4/2原積分=πa^2-3πa^4/2
計算二重積分∫∫(x^2+y^2+x)dxdy,其中d為區域x^2+y^2<=1
2樓:回金蘭表妍
首先計算∫∫xdxdy,由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,原積分=∫∫(x^2+y^2)dxdy,用極座標計算,=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2
3樓:求墨徹曲環
這是二重積分,要確定積分上下限。
積分割槽域的圖形知道吧?是閉環域。
換成極座標後,角度θ從0積到2∏,r從1積到2。
表示式為∫dθ∫lnr^2
rdr,注意要寫積分上下限。
然後算2個定積分就行了。
4樓:drar_迪麗熱巴
由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,
原積分=∫∫(x^2+y^2)dxdy,用極座標計算=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2
在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。
數值意義
二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。
求二重積分,∫∫√1-x^2dxdy,其中d為x^2+y^2=1,y=0,y=x所圍第一象限區域。
5樓:軟炸大蝦
這裡積分割槽域為單位圓在第一象限的八分之一圓部分(扇形),適合用極座標做
計算二重積分∫∫(x^2+y^2+x)dxdy,其中d為區域x^2+y^2<=1
6樓:援手
首先計算∫∫xdxdy,由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,原積分=∫∫(x^2+y^2)dxdy,用極座標計算,=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2
計算二重積分:∫∫(d)ln(1+x^2+y^2)dxdy,其中d是由圓周x^2+y^2=1及座標軸所圍的在第一象限內的閉區域
7樓:匿名使用者
極座標自
∫∫(d)ln(1+x²+y²)dxdy
=∫∫(d)rln(1+r²)drdθ
=∫[0→2π]dθ∫[0→1] rln(1+r²)dr
=2π∫[0→1] rln(1+r²)dr
=π∫[0→1] ln(1+r²)d(r²)
=πr²ln(1+r²)-2π∫[0→1] r³/(1+r²)dr
=πr²ln(1+r²)-2π∫[0→1] (r³+r-r)/(1+r²)dr
=πr²ln(1+r²)-2π∫[0→1] rdr+2π∫[0→1] r/(1+r²)dr
=πr²ln(1+r²)-πr²+π∫[0→1] 1/(1+r²)d(r²)
=πr²ln(1+r²)-πr²+πln(1+r²) |[0→1]
=πln2-π+πln2
=π(2ln2-1)
做錯了,當作整圓做的了。 結果再除以4
8樓:匿名使用者
∫∫zhi_d ln(1 + x² + y²) dxdy= ∫dao(0→
π版/2) dθ ∫(0→1) ln(1 + r²) ·權 rdr
= [ln(2) - 1/2] · π/2= (π/4)(2ln(2) - 1)
計算二重積分∫∫(x^2+y^2)^1/2dxdy,其中d:x^2+y^2<=2x
9樓:匿名使用者
極座標∫∫(x^2+y^2)^1/2dxdy=∫∫ r*r drdθ
=∫[-π/2→π/2]dθ∫[0→2cosθ] r² dr=(1/3)∫[-π/2→π/2] r³ |[0→2cosθ] dθ=(8/3)∫[-π/2→π/2] cos³θ dθ=(8/3)∫[-π/2→π/2] cos²θ d(sinθ)=(8/3)∫[-π/2→π/2] (1-sin²θ) d(sinθ)
=(8/3)(sinθ-(1/3)sin³θ) |[-π/2→π/2]
=32/9
計算二重積分 D1 xy1 x2 y2dxdy,其中D為x
由於積分割槽域d 故?d 1 xy 1 x y dxdy 2 2d 1 01 r sin cos 1 rrdr 2?2d 10 11 r rdr 2 2d 10r sin cos 1 rrdr 1 2ln 1 r 1 0 1 4cos2 2 2 1 0rdr1 r 2ln2 計算二重積分?d x y...
計算二重積分x 2 y 2 dxdy,其中積分割槽域Dx,y 1x 2 y
用極座標 x 2 y 2 dxdy 0,2 d 1,2 r 2dr 2 8 1 3 14 3 設極座標x cos y sin 1 2原式 0到2 d 1到2 ln 2d 2 1 2 2 ln 2 1 2 2 1到2 2 4ln2 3 2 8ln2 3 計算二重積分 ln x 2 y 2 dxdy,其...
計算二重積分y根號(x 2 y 2 dxdy,其中D x 2 y 21,y
用極座標算 x cos y sin 積分割槽域d是上半圓,0,1 0,x 2 y 2 dxdy d 專 2d d 前的上限是 下屬限是0 d 的上限是1,下限是0 1 3d 3 計算二重積分 x 2 y 2 dxdy,其中d x 2 y 2 2x。d 化成極座標,x 2 y 2 2x,變成r 2co...