計算二重積分x2ydxdy,其中Dx2y

2021-05-10 19:02:11 字數 3223 閱讀 6056

1樓:匿名使用者

計算二重積分時,應先計算其中一個自變數的取值範圍,接著計算另一個自變數的取值範圍,從而計算出二重積分。

2樓:戎忍秦絲雨

設x=rcost

y=rsint

-π/2<=t<=π/2

所以r^2<=2rcost

r<=2cost

∫∫√(x^2+y^2)dxdy

=∫[-π/2,π/2]

dt∫[0,2cost]

r^2dr

=∫[-π/2,π/2]

dt1/3r^3

[0,2cost]

=8/3

∫[-π/2,π/2]

cos^3t

dt=8/3∫[-π/2,π/2]

(1-sin^2t)

d(sint)

=8/3*(sint-1/3sin^3t)[-π/2,π/2]

=32/9

計算二重積分∫∫√(x^2+y^2)dxdy,其中d:x^2+y^2≤2x。 d

3樓:匿名使用者

化成極座標,x^2+y^2≤2x,變成r=2cosθ積分割槽域;0≤r≤2cosθ,

π/2≤θ≤π/2,

區域以x軸為上下對稱,只求第一象限區域,再2倍即可,i=2∫[0,π/2] dθ∫[0,2cosθ] r*rdr=2∫[0,π/2] dθ (r^3/3)[0,2cosθ]=(2/3)∫[0,π/2] *8(cosθ)^3 dθ=(16/3)∫[0,π/2] [1-(sinθ)^2]d(sinθ)

=(16/3)[sinθ-(sinθ)^3/3] [0,π/2]=(16/3)[1/2-1/8)

=32/9.

4樓:匿名使用者

^設x=rcost y=rsint -π/2<=t<=π/2所以r^2<=2rcost r<=2cost∫∫√(x^2+y^2)dxdy

=∫[-π/2,π/2] dt ∫[0,2cost] r^2dr=∫[-π/2,π/2] dt 1/3r^3 [0,2cost]=8/3 ∫[-π/2,π/2] cos^3t dt=8/3∫[-π/2,π/2] (1-sin^2t) d(sint)=8/3*(sint-1/3sin^3t) [-π/2,π/2]=32/9

計算二重積分∫∫√(x^2+y)dxdy,其中d:x^2+y^2≤2x請問極座標θ角的取值範圍是

5樓:匿名使用者

設x=rcost y=rsint -π

/2<=t<=π/2 所以r^2<=2rcost r<=2cost ∫∫√(x^2+y^2)dxdy =∫[-π/2,π/2] dt ∫[0,2cost] r^2dr =∫[-π/2,π/2] dt 1/3r^3 [0,2cost] =8/3 ∫[-π/2,π/2] cos^3t dt =8/3∫[-π/2,π/2] (1-sin^2t) d(sint) =8/3*(sint-1/3sin^3t) [-π/2,π/2] =32/9

計算二重積分∫∫(x+y)dxdy,其中d為x^2+y^2≤2x 30

6樓:匿名使用者

樓上錯的,樓上當作矩形區域算了

首先本題區域關於x軸對稱,y關於y是一個奇函式,因此積分為0,所以被積函式中的y可去掉。

∫∫(x+y)dxdy

=∫∫xdxdy

用極座標,x²+y²=2x的極座標方程為:r=2cosθ

=∫[-π/2---->π/2] dθ∫[0---->2cosθ] rcosθ*rdr

=∫[-π/2---->π/2] cosθdθ∫[0---->2cosθ] r²dr

=∫[-π/2---->π/2] (cosθ)*(1/3)r³ |[0---->2cosθ] dθ

=(8/3)∫[-π/2---->π/2] cos⁴θ dθ

=(16/3)∫[0---->π/2] cos⁴θ dθ

=(16/3)∫[0---->π/2] [1/2(1+cos2θ)]² dθ

=(4/3)∫[0---->π/2] (1+cos2θ)² dθ

=(4/3)∫[0---->π/2] (1+2cos2θ+cos²2θ) dθ

=(4/3)∫[0---->π/2] (1+2cos2θ+1/2(1+cos4θ)) dθ

=(4/3)∫[0---->π/2] (3/2+2cos2θ+1/2cos4θ) dθ

=(4/3)(3/2θ+sin2θ+1/8sin4θ) |[0---->π/2]

=(4/3)(3/2)*(π/2)=π

7樓:永恆約定志

d可化為:(x-1)²+y²≤1,得:0≤x≤1,-1≤y≤11 1 1所以:∫∫(x+y)dxdy=∫ dx ∫(x+y)dy=∫ 2xdx=4

0 -1 0

也可以先對x積分

計算二重積分∫∫(x^2+y^2+x)dxdy,其中d為區域x^2+y^2<=1

8樓:回金蘭表妍

首先計算∫∫xdxdy,由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,原積分=∫∫(x^2+y^2)dxdy,用極座標計算,=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2

9樓:求墨徹曲環

這是二重積分,要確定積分上下限。

積分割槽域的圖形知道吧?是閉環域。

換成極座標後,角度θ從0積到2∏,r從1積到2。

表示式為∫dθ∫lnr^2

rdr,注意要寫積分上下限。

然後算2個定積分就行了。

10樓:drar_迪麗熱巴

由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,

原積分=∫∫(x^2+y^2)dxdy,用極座標計算=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2

在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

數值意義

二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。

計算x 2 ydxdy的二重積分,其中D是由x 2 y 2 1及y 0,y 1所圍成的平面區域

2 15 4倍根號2 1 答案倒是這個,不過沒太弄懂,自己算的與答案符號相反。大致步驟是要用y用x表示,積分,x是兩段的 0,1 1,根號2 我也是偶然間遇到此題發現樓上答案不對以免誤導 d x y dxdy d x y dxdy d x y dxdy 0 1 dy 0 版 1 y x y dx 0...

計算二重積分x2ydxdy,其中D是拋物線yx

解題過程如下圖 意義當被積函式大於零時,二重積分是柱體的體積。當被積函式小於零時,二重積分是柱體體積負值。幾何意義 在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f x,y 的所表示的曲面和d底面所為圍的曲頂柱體的體積...

計算二重積分x 2 y 2 dxdy,其中積分割槽域Dx,y 1x 2 y

用極座標 x 2 y 2 dxdy 0,2 d 1,2 r 2dr 2 8 1 3 14 3 設極座標x cos y sin 1 2原式 0到2 d 1到2 ln 2d 2 1 2 2 ln 2 1 2 2 1到2 2 4ln2 3 2 8ln2 3 計算二重積分 ln x 2 y 2 dxdy,其...