a,b長度的定積分表示是,區間a,b長度的定積分表示是

2021-05-14 18:20:25 字數 5333 閱讀 6456

1樓:霍思菱慕壽

一般公式為:

∫(a,b)f(x)dx

2樓:花果山口感

b其中:a叫做積分下限,b叫做積分上限,區間[a, b]叫做積分割槽間,函式f(x)叫做被積函式,x叫做積分變數,f(x)dx 叫做被積表示式,∫ 叫做積分號。

定積分定義

3樓:穆子澈想我

定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!

一個函式,可以存在不定積分,而不存在定積分;也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

定積分性質

1、當a=b時,

2、當a>b時,

3、常數可以提到積分號前。

4、代數和的積分等於積分的代數和。

5、定積分的可加性:如果積分割槽間[a,b]被c分為兩個子區間[a,c]與[c,b]則有

又由於性質2,若f(x)在區間d上可積,區間d中任意c(可以不在區間[a,b]上)滿足條件。

6、如果在區間[a,b]上,f(x)≥0,則

7、積分中值定理:設f(x)在[a,b]上連續,則至少存在一點ε在(a,b)內使

4樓:縱橫豎屏

設函式f(x) 在區間[a,b]上連續,將區間[a,b]分成n個子區間[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。

其中:a叫做積分下限,b叫做積分上限,區間[a, b]叫做積分割槽間,函式f(x)叫做被積函式,x叫做積分變數,f(x)dx 叫做被積表示式,∫ 叫做積分號。

擴充套件資料:

定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。

這裡應注意定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有!

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。

一般定理:

定理1:設f(x)在區間[a,b]上連續,則f(x)在[a,b]上可積。

定理2:設f(x)區間[a,b]上有界,且只有有限個間斷點,則f(x)在[a,b]上可積。

定理3:設f(x)在區間[a,b]上單調,則f(x)在[a,b]上可積。

牛頓-萊布尼茨公式

定積分與不定積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:

用文字表述為:一個定積分式的值,就是原函式在上限的值與原函式在下限的值的差。

正因為這個理論,揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。

5樓:吉儉門巳

定積分是以平面圖形的面積問題引出的。如右上圖,y=f(x)為定義在[a,b〕上的函式,為求由x=a,x=b,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b〕分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。

把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b〕上的定積分,表為即稱[a,b〕為積分割槽間,f(x)為被積函式,a,b分別稱為積分的上限和下限。當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:

這是c牛頓萊布尼茲公式。

6樓:賽士恩光雀

定積分正式名稱是黎曼積分,是一個數學定義。分劃的引數趨於零時的極限,叫做這個函式在這個閉區間上的定積分。

不定積分是一組導數相同的原函式,定積分則是一個數值。求一個函式的原函式,叫做求它的不定積分;求一個函式相應於閉區間的一個帶標誌點分劃的黎曼和關於這個分劃的引數趨於零時的極限,叫做這個函式在這個閉區間上的定積分。

不定積分(indefinite

integral)

即已知導數求原函式。若

f′(x)=f(x),那麼[

f(x)+c]′=f(x).(c∈

r).也就是說,把f(x)積分,不一定能得到

f(x),因為

f(x)+c的導數也是f(x)(c是任意常數)。所以f(x)積分的結果有無數個,是不確定的。我們一律用

f(x)+c代替,這就稱為不定積分。即如果一個導數有原函式,那麼它就有無限多個原函式。

定積分(definite

integral)

定積分就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由

y=0,x=a,x=b,y=f(x)所圍成圖形的面積。這個圖形稱為曲邊梯形,特例是曲邊三角形。

7樓:匿名使用者

定積分 (definite integral)

定積分就是求函式f(x)在區間[a,b]中圖線下包圍的面積。即由 y=0,x=a,x=b,y=f(x)所圍成圖形的面積。

設函式f(x) 在區間[a,b]上連續,將區間[a,b]分成n個子區間[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各區間的長度依次是:△x1=x1-x0, △x2=x2-x1, …, △xn=xn-xn-1。

在每個子區間(xi-1,xi]中任取一點ξi(1,2,...,n),作和式

。設λ=max(即λ是最大的區間長度),則當λ→0時,該和式無限接近於某個常數,這個常數叫做函式f(x) 在區間[a,b]的定積分,記為

:其中:a叫做積分下限,b叫做積分上限,區間[a, b]叫做積分割槽間,函式f(x)叫做被積函式,x叫做積分變數,f(x)dx 叫做被積表示式,∫ 叫做積分號。

之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數, 而不是一個函式

8樓:匿名使用者

1/3*b^3+b-(1/3*a^3+a)

9樓:龔梅年芝

定義:設函式f(x)在[a,b]上有界,在[a,b]中任意插入若干分點,a=x0區間[a,b]分成n個小區間,各個小區間的長度為δxi=xi-x(i-1)(這裡i-1為下標,而且i為小於等於n的正整數),在各個小區間上任取一點ξi(ξi∈δxi),做乘積f(ξi)δx並做和∑(n,

i=1)f(ξi)δx

記λ=max,

如果不論多[a,b]如何分也不論ξi取δxi中的何位置,只要當λ->0時,和s總趨於確定的極限,這個極限便是f(x)在區間[a,b]上的定積分,記為

解釋:因為定積分可以看為一個曲邊梯形的面積

將一個曲邊梯形梯形的面積分為n個長方形計算,其中,每一個長方形的底為δxi,該長方形的高通過對應法則(即y軸上的投影)為f(ξi),則長方形的面積就應該是f(ξi)δx,曲邊梯形的面積近似值就是∑(n,

i=1)f(ξi)δx

這時,如果我們取λ=max中的最大值而且將它趨於零,意味著所有的元素都應該趨於零(最大值趨於零看成其他數值的低階無窮小理解),那麼面積的值將越來越精確。(趨於零,這裡長方形的寬越來越小(可以理解為有面積的線段之和)),根據極限的定義,可以寫成一個和的極限形式,這便是定積分的概念

當δxi越來越小的時候,面積表示越來越精確

此外,題主給出的題目答案為:-1/6,可以先求t(t-1)的原函式,即為(t^3)/3-(t^2)/2,代入積分上下線相減得到結果-1/6

這裡使用到了牛頓萊布尼茨公式。如果要用定積分的定義求,會相對比較麻煩。

定積分的意義是什麼?定積分的幾何意義是在區間【a,b】上縱座標的和嗎?為什麼定積分又可以表示面積?

10樓:pasirris白沙

抽象來說,樓主的說法是對的。

但是,很多人是不會同意樓主的說法的,而且會「嚴辭駁斥」。

其實樓主的問題還涉及另外一格更為重要的問題:漢語有時無法表達準確的意思。

這一點講深了,會觸犯眾怒,成為全民公敵。

1、一般的理解的是,縱座標是高,積分就是每個對應的高乘以底寬,為幾何意義上的面積;

這裡的高、寬,都是絕對意義上的高、寬。

2、英文中specific一詞,漢語無法準確翻譯,湊合的翻譯是「比」,譬如比熱、比重,大家都

能準確理解。但是specific energy,specific mass,specific volume、、、、、又該如何

翻譯?漢語中無一定論。具體來說,電勢就是specific energy。

樓主的高,如果是specifc height時,樓主的說法,就完全成立。

可是,我們的集體情緒,我們的民族尊嚴,我們的政治意識,不允許對漢語有任何負面的

好了,不多說了,關於積分的物理意義,請參見本人的總結**:

關於定積分有如下幾何意義:如果在區間[a,b]上函式f(x)連續且恆有f(x)≥0,那麼定積分∫ baf(x)dx

11樓:匿名使用者

在區間[a,b]上函式f(x)連續且恆有f(x)≥0,那麼定積分∫ baf(x)dx表示由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的曲邊梯形的面積.故答案為:b.0.在區間[a,b]上函式f(x)連續且恆有f(x)≥0,那麼定積分∫ baf(x)dx表示由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的曲邊梯形的面積.故答案為:

b.0.在區間[a,b]上函式f(x)連續且恆有f(x)≥0,那麼定積分∫ baf(x)dx表示由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的曲邊梯形的面積.故答案為:b.

0.在區間[a,b]上函式f(x)連續且恆有f(x)≥0,那麼定積分∫ baf(x)dx表示由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的曲邊梯形的面積.故答案為:b.0.在區間[a,b]上函式f(x)連續且恆有f(x)≥0,那麼定積分∫ baf(x)dx表示由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的曲邊梯形的面積.故答案為:

b.0.

函式fx在區間上的定積分在幾何上表示相應的曲邊

這句話不全面,應該表述成函式f x 在區間 a,b 上的定積分的幾何意義是被積函式的函式曲線與座標軸圍成的面積的代數和,因此其面積的代數和即定積分可正可負,x軸之上部分為正,x軸之下部分為負。定積分的幾何意義是表示曲邊梯形面積值的代數和還是表示面積?表示面積值的代數和,全面的來講,當f x 0時,表...

下列圖例表示水庫的是AB,下列圖例表示水庫的是ABCD

b本題主要考查的是圖例的相關知識。a為城市,b為水庫,c為國界,d為公路。下列圖例中,通常用於表示水庫的是 a b c d 地圖上有一些常見的圖例 表示水庫 表示長城 表示鐵路 表示國界 故選 a 下列圖例中表示運河的是 a b c d 表示洲界線 表示運河 表示長城 表示鐵路 結合選項 故選 b ...

不定積分dxx a)(x b其中a b是常數求具體過程步驟重點是過程不是答

b x b a x a b a x a 1 x a dx 2 1 2 x a d x a 2 d x a 我的做法 dx x a x b dx x a b x ab dx x a b 2 a b 2 ab dx x a b 2 a b 2 ln a b 2 x a b 2 a b 2 c dx x ...