1樓:小艾
樓主估計抄錯了吧,y=x與y=(x-2)是平行的,汗。
2樓:公子好壊
y=x 與 y=x-2 是平行的 怎麼圍成圖形啊 lz看錯題目了吧
求由曲線y=1/x和直線y=x,x=2所圍成的平面圖形的面積
3樓:我是一個麻瓜啊
圍成的平面圖形的面積解法如下:
知識點:定積分是積分的一種,是函式f(x)在區間[a,b]上的積分和的極限。
定積分與不定積分之間的關係:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函式表示式,它們僅僅在數學上有一個計算關係(牛頓-萊布尼茨公式),其它一點關係都沒有。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函式,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函式一定不存在,即不定積分一定不存在。
擴充套件資料
定積分性質:
1、當a=b時,
2、當a>b時,
3、常數可以提到積分號前。
4、代數和的積分等於積分的代數和。
5、定積分的可加性:如果積分割槽間[a,b]被c分為兩個子區間[a,c]與[c,b]則有
又由於性質2,若f(x)在區間d上可積,區間d中任意c(可以不在區間[a,b]上)滿足條件。
6、如果在區間[a,b]上,f(x)≥0,則
7、積分中值定理:設f(x)在[a,b]上連續,則至少存在一點ε在(a,b)內使
4樓:匿名使用者
這是一道數學題取錢買的1x次獻身賣店cx等於20,為什麼拼命圖形的面積等於是?長乘寬除以二。
5樓:慕涼血思情骨
圖可能畫的不太好,s1的話是x=1和y=x和x軸圍成的面積。s2是y=1/x與x軸圍成的面積。而不是上面那個封閉的圖形,可以多看一下例題。就可以知道哪個才是應該算的面積了。
6樓:百駿圖
答案是1/2+ln2
7樓:寂寞33如雪
直接做圖,看所圍成的影象,然後再利用導函式裡面的定積分就可以做了!
求曲線y=x^2,y=(x-2)^2與x軸圍成的平面圖形的面積
8樓:周洪範
圍成的平面圖形的面積的近似值=0.67
搜尋資料 我來答
分享舉報
9樓:
y=(x-2)^2 是由 y=x^2 右移 2 個單位所得,由對稱性:
面積=2∫《x=0,1》x^2dx
=(2/3)*x^3《x=0,1》
=2/3
曲線y=cosx直線y=3π/2-x和y軸圍成圖形的面積
10樓:智課網
首先畫出圖形,找出兩個圖形的交點。面積計算用積分,
數學 求曲線y=x^2,y=(x-2)^2與x軸圍成的平面圖形的面積
11樓:匿名使用者
聯立y=x²與y=(x-2)²
得交點(1,1)
∴s=∫(0,1)x²dx+∫(1,2)(x-2)²dx=1/3x³|(0,1)+∫(1,2)(x²-4x+4)dx=1/3x³|(0,1)+(1/3x³-2x²+4x)|(1,2)=1/3+(8/3-8+8)-1/3+2-4 =2/3.
求曲線y=x^2,y=(x-2)^2與x軸圍成的平面圖形的面積。 需要詳細解答,急求 謝謝。
12樓:數神
解答:聯立y=制x²與y=(x-2)²
得交點(1,1)
∴s=∫
(0,1)x²dx+∫(1,2)(x-2)²dx=1/3x³|(0,1)+∫(1,2)(x²-4x+4)dx=1/3x³|(0,1)+(1/3x³-2x²+4x)|(0,1)=1/3+(1/3-2+4)
=8/3.
但願對你有幫助!
將曲線y x與y x 2所圍成的平面圖形繞x軸旋轉一週,所得
這是定積分中微元法的應用問題 y x和y x 2的交點是 0,0 和 1,1 你可以畫一下圖,我這不好弄,不好意思啦 所以也就是求下限為0,上限為1,被積部分為 x x 2 dx 的積分 1 2 x 2 1 3 x 3 下限為0上限為1 1 2乘1 2 1 3乘1 3 1 2乘0 2 1 3乘0 3...
求曲線yx平方,yx2平方與x軸圍成的平面圖形的面
這裡兩個曲線bai與x軸圍成的區域為du 0,2 把這zhi兩個影象在平面直角座標系dao中畫出來,內可以得到該面積為兩部分的 容和 第一部分為 x 2dx 1 3 積分割槽域是 0,1 上 第二部分為 x 2 2dx 1 3積分割槽域是 1,2 上 所以,平面圖形的面積為2 3 求曲線y x 2,...
求由曲線y x y x 2 2及直線y 0所圍成的平面圖形的面積。 要求畫圖
如圖所示 未完待續 事實上兩個函式的圖象關於直線x 1對稱,所以供參考,請笑納。用二重積分求由曲線y x 2與直線y x 3所圍成的平面圖形的面積 解題過程如下 y x y x 2 2 x dx x dx 0,3 x 3 x 2x 3 dx 0,3 x 3xdx x 3 3x 2 0,3 9 27 ...