1樓:霍光輝雷月
直線和x軸夾角
或者和y軸夾角等等
因為是一個引數而已,所以任何合理的可以表達直線意義的都行。
2樓:羊舌平春醜容
任意點到定點的距離
(x-x0)^2
+(y-y0)^2
=t^2
也就是直線上任意一點到(x0,
y0)的距離
3樓:蔚浩闊盍齊
表示以定點m(x0,y0)為起點,任意一點p(x,y)為終點的有向線段m
p的數量。
4樓:祈樂荷洛和
t是一個無間斷的時間序列,隨著t的變化,對應的(x,y)的點的確定,則構成各種曲線或者別的平面以及各種幾何概念
直線的引數方程中引數t的幾何意義是什麼?
5樓:勤奮的陸
t總是有幾何意義的,表示直線和x軸夾角或者和y軸夾角等等,因為是一個引數而已,所以任何合理的可以表達直線意義的都行。
例子:直線的引數方程x=x0+at,y=y0+bt中,(a,b)為直線的一個方向向量,當這個方向向量是單位向量的時候,即a²+b²=1時,直線會有這樣的引數方程。
擴充套件資料
引數是參變數的簡稱。它是研究運動等一類問題中產生的。質點運動時,它的位置必然與時間有關係,也就是說,質的座標x,y與時間t之間有函式關係x=f(t),y=g(t),這兩個函式式中的變數t。
相對於表示質點的幾何位置的變數x,y來說,就是一個「參與的變數」。這類實際問題中的參變數,被抽象到數學中,就成了引數。我們所學的引數方程中的引數,其任務在於溝通變數x,y及一些常量之間的聯絡,為研究曲線的形狀和性質提供方便。
用引數方程描述運動規律時,常常比用普通方程更為直接簡便。對於解決求最大射程、最大高度、飛行時間或軌跡等一系列問題都比較理想。有些重要但較複雜的曲線(例如圓的漸開線),建立它們的普通方程比較困難,甚至不可能,列出的方程既複雜又不易理解。
根據方程畫出曲線十分費時;而利用引數方程把兩個變數x,y間接地聯絡起來,常常比較容易,方程簡單明確,且畫圖也不太困難。
6樓:匿名使用者
x=xa+tcosa,y=ya+tsina,若t前面的係數分別為直線傾斜角的餘弦和正弦(如上式,a為直線傾斜角),
則t的幾何意義即為點(xa,ya)到該點(x,y)構成的向量的數量。
不是距離,距離總是正的,而t可取正也可去負。
7樓:
任意點到定點的距離
(x-x0)^2 + (y-y0)^2 = t^2
也就是直線上任意一點到(x0, y0)的距離
8樓:匿名使用者
t是一個無間斷的時間序列,隨著t的變化,對應的(x,y)的點的確定,則構成各種曲線或者別的平面以及各種幾何概念
9樓:匿名使用者
表示以定點m(x0,y0)為起點,任意一點p(x,y)為終點的有向線段m p的數量。
10樓:匿名使用者
這還真沒有什麼幾何意義
如何理解直線引數方程中的t的幾何意義
11樓:鬆津高桀
t的意義要看你設的是什麼了、
因為兩點橫座標的差與兩點距離的比是傾斜角的餘弦,縱座標的差與兩點距離的比是傾斜角的正弦,所以引數方程中的引數可以距離來代替,這樣我們更可以看清直線的本質!
12樓:勤奮的陸
t總是有幾何意義的,表示直線和x軸夾角或者和y軸夾角等等,因為是一個引數而已,所以任何合理的可以表達直線意義的都行。
例子:直線的引數方程x=x0+at,y=y0+bt中,(a,b)為直線的一個方向向量,當這個方向向量是單位向量的時候,即a²+b²=1時,直線會有這樣的引數方程。
擴充套件資料
引數是參變數的簡稱。它是研究運動等一類問題中產生的。質點運動時,它的位置必然與時間有關係,也就是說,質的座標x,y與時間t之間有函式關係x=f(t),y=g(t),這兩個函式式中的變數t。
相對於表示質點的幾何位置的變數x,y來說,就是一個「參與的變數」。這類實際問題中的參變數,被抽象到數學中,就成了引數。我們所學的引數方程中的引數,其任務在於溝通變數x,y及一些常量之間的聯絡,為研究曲線的形狀和性質提供方便。
用引數方程描述運動規律時,常常比用普通方程更為直接簡便。對於解決求最大射程、最大高度、飛行時間或軌跡等一系列問題都比較理想。有些重要但較複雜的曲線(例如圓的漸開線),建立它們的普通方程比較困難,甚至不可能,列出的方程既複雜又不易理解。
根據方程畫出曲線十分費時;而利用引數方程把兩個變數x,y間接地聯絡起來,常常比較容易,方程簡單明確,且畫圖也不太困難。
13樓:匿名使用者
如果將此直線看成一條數軸(以p0為原點,直線向上的方向為數軸的正方向,長度單位與座標軸的長度單位相同),那麼p點對應t值就是p點在此數軸上的座標,這就是t的幾何意義的真正含義。
搜尋 直線引數方程中的t的幾何意義 部落格
14樓:淦笑笑胥鈺
直線和x軸夾角
或者和y軸夾角等等
因為是一個引數而已,所以任何合理的可以表達直線意義的都行。
15樓:
直線上任意一點m(x,y)為起點,任意一點n(x『,y』)為終點的有向線段mn(向量)的數量mn且|t|=|mn|
16樓:匿名使用者
x=xa+tcosa,y=ya+tsina,若t前面的係數分別為直線傾斜角的餘弦和正弦(如上式,a為直線傾斜角),
則t的幾何意義即為點(xa,ya)到該點(x,y)構成的向量的數量。
不是距離,距離總是正的,而t可取正也可去負。
17樓:
任意點到定點的距離
(x-x0)^2 + (y-y0)^2 = t^2
也就是直線上任意一點到(x0, y0)的距離
18樓:du知道君
x=x0+tcosa y=y0+tsina 引數t就是在直線上距離點(x0, y0)距離為t的點p(x, y).
19樓:匿名使用者
t是一個無間斷的時間序列,隨著t的變化,對應的(x,y)的點的確定,則構成各種曲線或者別的平面以及各種幾何概念
20樓:匿名使用者
t,確定(x, y)=(0,0)時影象所在的象限
引數方程中t的幾何意義
21樓:不是苦瓜是什麼
引數方程中t的幾何意義要看具體的曲線方程了,一般都是長度,角度等幾何量,也有一些是不容易找到對應的幾何量的。
比如:
對於直線:x=x0+tcosa, y=y0+tsina, 引數t是直線上p(x,y)到定點(x0, y0)的距離。
對於圓:x=x0+rcost, y=y0+rsint, 引數t是圓上p(x, y)點水平方向的圓心角。
引數方程和函式很相似:它們都是由一些在指定的集的數,稱為引數或自變數,以決定因變數的結果。例如在運動學,引數通常是「時間」,而方程的結果是速度、位置等。
一般地,在平面直角座標系中,如果曲線上任意一點的座標x、y都是某個變數t的函式:
並且對於t的每一個允許的取值,由方程組確定的點(x, y)都在這條曲線上,那麼這個方程就叫做曲線的引數方程,聯絡變數x、y的變數t叫做參變數,簡稱引數。相對而言,直接給出點座標間關係的方程叫普通方程。
22樓:嗨丶zh先生
t總是有幾何意義的,表示直線和x軸夾角或者和y軸夾角等等,因為是一個引數而已,所以任何合理的可以表達直線意義的都行。
例子:直線的引數方程x=x0+at,y=y0+bt中,(a,b)為直線的一個方向向量,當這個方向向量是單位向量的時候,即a²+b²=1時,直線會有這樣的引數方程。
23樓:雨落了淚卻幹了
對於直線:x=x0+tcosa, y=y0+tsina, 引數t是直線上p(x,y)到定點(x0, y0)的距離。
對於圓:x=x0+rcost, y=y0+rsint, 引數t是圓上p(x, y)點水平方向的圓心角。
24樓:我對必爭
哪種引數方程,如直線引數方程,拋物線引數方程等
25樓:
這要看具體的曲線方程了,一般都是長度,角度等幾何量,也有一些是不容易找到對應的幾何量的。比如:
對於直線:x=x0+tcosa, y=y0+tsina, 引數t是直線上p(x,y)到定點(x0, y0)的距離。
對於圓:x=x0+rcost, y=y0+rsint, 引數t是圓上p(x, y)點水平方向的圓心角。
直線引數方程中引數t在什麼情況下有幾何意義
26樓:勤奮的陸
t總是有幾何意義的,表示直線和x軸夾角或者和y軸夾角等等,因為是一個引數而已,所以任何合理的可以表達直線意義的都行。
例子:直線的引數方程x=x0+at,y=y0+bt中,(a,b)為直線的一個方向向量,當這個方向向量是單位向量的時候,即a²+b²=1時,直線會有這樣的引數方程。
擴充套件資料
引數是參變數的簡稱。它是研究運動等一類問題中產生的。質點運動時,它的位置必然與時間有關係,也就是說,質的座標x,y與時間t之間有函式關係x=f(t),y=g(t),這兩個函式式中的變數t。
相對於表示質點的幾何位置的變數x,y來說,就是一個「參與的變數」。這類實際問題中的參變數,被抽象到數學中,就成了引數。我們所學的引數方程中的引數,其任務在於溝通變數x,y及一些常量之間的聯絡,為研究曲線的形狀和性質提供方便。
用引數方程描述運動規律時,常常比用普通方程更為直接簡便。對於解決求最大射程、最大高度、飛行時間或軌跡等一系列問題都比較理想。有些重要但較複雜的曲線(例如圓的漸開線),建立它們的普通方程比較困難,甚至不可能,列出的方程既複雜又不易理解。
根據方程畫出曲線十分費時;而利用引數方程把兩個變數x,y間接地聯絡起來,常常比較容易,方程簡單明確,且畫圖也不太困難。
27樓:我是一個麻瓜啊
t總是有幾何意義的。但是隻有直線引數方程是標準形式時候才有這樣的幾何意義,即有向線段的長度。
直線的引數方程x=x0+at,y=y0+bt中,(a,b)為直線的一個方向向量,當這個方向向量是單位向量的時候,即a²+b²=1時,直線會有這樣的引數方程。
直線的引數方程中,引數t的幾何意義是什麼?如x=2-t,y=5+t (t為引數)
28樓:匿名使用者
你直線的引數方程都寫錯?你家的餘弦會是2正弦會是5的?
x=x0+tcosθ
y=y0+tsinθ
這是傾斜角為θ,經過(x0,y0)的直線的引數方程,引數t的幾何意義是|t|為直線上任意一點到(x0,y0)的距離
麻煩你以後背東西背完整
直線的引數方程中引數t的幾何意義?例如這個題裡面PA和PB的距離就是t1和t2不太懂
p x0,y0 傾角 q x,y 距p的距離t,q在p上方,t 0,下方,t 0 x x0 tcos y y0 tsin 本題p 0,1 3 x t 2 y 1 3t 2 pa t1 pb t2 你可以看成是時間,一個與兩個變數有聯絡的量 直線引數方程t的幾何意義到底是神馬啊!為毛有的題求 pa p...
直線引數方程中引數t在什麼情況下有幾何意義
不必過於在意它的 幾何意義 因為許許多多的情況下,是沒有啥啥幾何意義的!例如 甲是乙的哥哥 丙是乙的弟弟。甲與丙是啥關係?答 甲為丙的哥哥。問 引數乙有啥幾何意義?說不上。頂多算是中介人。直線引數方程的引數,也是這個道理。例如 x t,y t,t是引數 我們可以把t當作任意性的幾何意義。都行!如 時...
為什在直線l的一般引數方程中引數t的幾何意義與直線標準引數方程中參
因為兩種方程中t的係數不一致,造成兩種方程中引數t的意義不同。直線的引數方程中引數t的幾何意義是什麼?t總是有幾何意義的,表示直線和x軸夾角或者和y軸夾角等等,因為是一個引數而已,所以任何合理的可以表達直線意義的都行。例子 直線的引數方程x x0 at,y y0 bt中,a,b 為直線的一個方向向量...