直線的標準引數方程與一般引數方程(即非標準引數方程)有什麼區

2021-05-29 19:28:33 字數 3803 閱讀 9076

1樓:閉秀梅金女

直線bai的一般方程表示的是

dux、y之間的直接關係。zhi

而引數方dao程表示的是版x、y與引數t之間的間接關權系。

直線的引數方程的一般式為:ax+by+c=0;

直線引數方程的標準形式為:

x=x0+tcosa,y=y0+tsina其中t為引數.

直線的一般方程表示的是x、y之間的直接關係。引數方程在化為一般方程時要注意引數的取值範圍,如:x=cos²t,y=sin²t,化為一般方程應該是x+y=1

(-1≤x≤1)是一段線段。

2樓:哀興宰鶯

直線的引數抄方程可以改寫成

(x-x')/cosa=(y-y')/sina關鍵襲是分母cosa,sina這兩個數,重要的是他們的比值(即斜率k=sina/cosa),而不是他們本身!如2/3=4/6=……

所以分母大於1是不足為奇的

x=1+2t,y=2-3t

可以改寫為(x-1)/2=(y-2)/(-3),分母一個是2,一個是-3,這說明直線的斜率為-3/2

反過來,設恭花多拘鼙餃俄邪藩矛有引數方程x=x'+at,y=y'+bt,消參後知它表示一條直線。

直線的標準引數方程與一般引數方程(即非標準引數方程)有什麼區別,怎麼分辨的??

3樓:劉寧

直線的一般方程表示的是x、y之間的直接關係。

而引數方程表示的是x、y與引數t之間的間接關係。

直線的引數方程的一般式為:ax+by+c=0;

直線引數方程的標準形式為:

x=x0+tcosa,y=y0+tsina 其中t為引數.

直線的一般方程表示的是x、y之間的直接關係。引數方程在化為一般方程時要注意引數的取值範圍,如:x=cos²t,y=sin²t,化為一般方程應該是x+y=1 (-1≤x≤1)是一段線段。

4樓:匿名使用者

標準引數方程可以看出其數學意義例如表示以(1,2)為圓心,3為半徑的圓,引數α在標準引數方程裡有其特殊數學意義。而非標準引數方程的引數則沒有,所以一般不能把非標準引數方程與其他方程聯立,因為非標準引數方程擴大了定義域。如果原方程定義域為r則沒有影響

什麼是直線引數方程的標準形式?

5樓:是月流光

x=x0+tcosa

y=y0+tsina   ( 其中t為引數)判斷一個直線引數方程是否為標準形式:t的係數平方和是否為一,圖中2^2+1^2不為一,所以不是標準形式。

從平面解析幾何的角度來看,平面上的直線就是由平面直角座標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與 x 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對於x軸)的傾斜程度。

可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個座標軸的交點在該座標軸上的座標,稱為直線在該座標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。

在空間,兩個平面相交時,交線為一條直線。因此,在空間直角座標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

6樓:凌月霜丶

直線引數方程如何化成直線標準引數方程

歸一化係數即可

比如x=x0+at,y=y0+bt

可化成標準方程:

x=x0+pt

y=y0+qt

這裡p=a/√(a²+b²),q=b/√(a²+b²)直線的引數方程的一般式為:ax+by+c=0;

直線引數方程的標準形式為:

x=x0+tcosa

y=y0+tsina 其中t為引數.

直線的一般方程表示的是x、y之間的直接關係,而引數方程表示的是x、y與引數t之間的間接關係.另外,引數方程在華為一般方程時要注意引數的取值範圍

7樓:匿名使用者

高中數學極座標引數方程:直線標準引數方程

8樓:西域牛仔王

標準方程中,t 的係數需滿足平方和為 1 。

9樓:樂於助人的小豬

直線引數方程的標準形式是y=ax+b,其中a、b為引數。

圖中的直線方程為引數方程,可

以把x=1+2t

變形為t=(x-1)/2

然後代入y=2+t,即得到直線方程的標準形式:

y=1/2x+3/2

直線一般式方程適用於所有的二維空間直線。它的基本形式是ax+by+c=0 (a,b不全為零)。因為這樣的特點特別適合在計算機領域直線相關計算中用來描述直線。

直線引數方程怎麼化成標準型

10樓:demon陌

歸一化係數即可

比如x=x0+at, y=y0+bt

可化成標準方程:

x=x0+pt

y=y0+qt

這裡p=a/√(a²+b²), q=b/√(a²+b²)

擴充套件資料:

引數方程和函式很相似:它們都是由一些在指定的集的數,稱為引數或自變數,以決定因變數的結果。例如在運動學,引數通常是「時間」,而方程的結果是速度、位置等。

一般地,在平面直角座標系中,如果曲線上任意一點的座標x、y都是某個變數t的函式:

如果函式f(x)及f(x)滿足:

⑴在閉區間[a,b]上連續;

⑵在開區間(a,b)內可導;

⑶對任一x∈(a,b),f'(x)≠0。

那麼在(a,b)內至少有一點ζ,使等式

[f(b)-f(a)]/[f(b)-f(a)]=f'(ζ)/f'(ζ)成立。

柯西簡潔而嚴格地證明了微積分學基本定理即牛頓-萊布尼茨公式。他利用定積分嚴格證明了帶餘項的泰勒公式,還用微分與積分中值定理表示曲邊梯形的面積,推導了平面曲線之間圖形的面積、曲面面積和立體體積的公式。

11樓:釋普志

引數方程的表示:

先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得引數方程:x=2+2cost,y=2sint

其中t表示

的是圓上某一點p(x,y)與圓心a(2,0)組成的射線ap與x軸的夾角,所以t∈[0,2π]極座標方程的表示:

由圓的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圓的極座標方程ρ=4cosθ這裡的ρ表示圓上一點p(x,y)到極點,也就是座標原點〇的距離.

角度θ的範圍一般有兩種表示方法,一種是θ表示從極軸逆時針轉向射線〇p的角度的大小,所以θ的範圍[0,2π];另一種是θ是表示射線〇p與極軸,也就是x軸的夾角,並且規定極軸上方的夾角正,下方為負,所以θ的範圍是[-π,π].

很明顯,對於圓x^2+y^2=4x來說,θ的表示用第二種形式會簡單些,即θ∈[-π/2,π/2]所以,圓x^2+y^2=4x的引數方程是x=2+2cost,y=2sint,t∈[0,2π]極座標方程是ρ=4cosθ,θ∈[-π/2,π/2]

12樓:

函式以引數方程的形式表示,是為了方便,其形式也不是唯一的,如果用引數方程表示還沒有原來的形式簡潔,這又何必呢?因此一般地研究用引數式表示函式是沒有任何意思的,只有具體問題具體分析,即對於具體的函式才需要考慮要不要用引數式表示及怎樣表示。 例如函式y=f(x)總可以用這樣的引數式表示:

x=t,y=f(t),但這有什麼意思呢?

13樓:匿名使用者

高中數學極座標引數方程:直線標準引數方程

為什在直線l的一般引數方程中引數t的幾何意義與直線標準引數方程中參

因為兩種方程中t的係數不一致,造成兩種方程中引數t的意義不同。直線的引數方程中引數t的幾何意義是什麼?t總是有幾何意義的,表示直線和x軸夾角或者和y軸夾角等等,因為是一個引數而已,所以任何合理的可以表達直線意義的都行。例子 直線的引數方程x x0 at,y y0 bt中,a,b 為直線的一個方向向量...

已知直線l的引數方程,已知直線l的引數方程xty12tt為引數和圓C的極座標方程

dui 消去引數t,zhi得直線l的普 dao通方程為y 2x 1,2 2 sin 4 即 2 sin cos 兩邊同內乘以 容得 2 2 sin cos 得 c的直角座標方程為 x 1 2 y 1 2 2 ii 圓心c到直線l的距離d 2 1 1 22 12 2 5 5 2,所以直線l和 c相交....

為什麼直線引數方程必須是標準式,t才具有一定的幾何意義

寫這麼多很辛苦,忘採納 如果引數方程不是標準式,可以簡單轉化成標準形式,再利用t的幾何意義求解。為什麼直線的引數方程必須要化成標準形式才能與其他方程聯立,10 都沒有答到點上,我來說明一下 直線引數方程標準形式 x x0 tcos y y0 tsin t為引數 和非標準形式 x x0 at,y y0...