1樓:慕容雲明
一元三次方程的求根公式用通常的演繹思維是作不出來的,用類似解一元二次方程的求根公式的配方法只能將型如ax^3+bx^2+cx+d+0的標準型一元三次方程形式化為x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用歸納思維得到,即根據一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式歸納出一元三次方程的求根公式的形式。歸納出來的形如 x^3+px+q=0的一元三次方程的求根公式的形式應該為x=a^(1/3)+b^(1/3)型,即為兩個開立方之和。歸納出了一元三次方程求根公式的形式,下一步的工作就是求出開立方里面的內容,也就是用p和q表示a和b。
方法如下:
(1)將x=a^(1/3)+b^(1/3)兩邊同時立方可以得到
(2)x^3=(a+b)+3(ab)^(1/3)(a^(1/3)+b^(1/3))
(3)由於x=a^(1/3)+b^(1/3),所以(2)可化為
x^3=(a+b)+3(ab)^(1/3)x,移項可得
(4)x^3-3(ab)^(1/3)x-(a+b)=0,和一元三次方程和特殊型x^3+px+q=0作比較,可知
(5)-3(ab)^(1/3)=p,-(a+b)=q,化簡得
(6)a+b=-q,ab=-(p/3)^3
(7)這樣其實就將一元三次方程的求根公式化為了一元二次方程的求根公式問題,因為a和b可以看作是一元二次方程的兩個根,而(6)則是關於形如ay^2+by+c=0的一元二次方程兩個根的韋達定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)對比(6)和(8),可令a=y1,b=y2,q=b/a,-(p/3)^3=c/a
(10)由於型為ay^2+by+c=0的一元二次方程求根公式為
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化為(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
將(9)中的a=y1,b=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)a=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
b=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)將a,b代入x=a^(1/3)+b^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)
式 (14)只是一元三方程的一個實根解,按韋達定理一元三次方程應該有三個根,不過按韋達定理一元三次方程只要求出了其中一個根,另兩個根就容易求出了
2樓:匿名使用者
提取公因式,化成二次和一次之積! 在高中時代完全是這樣的。肯定可以的。
求一元三次方程的解法。詳細一點?
3樓:匿名使用者
如圖所示:
其解法有:義大利學者卡爾丹於2023年發表的卡爾丹公式法;中國學者範盛金於2023年發表的盛金公式法。
兩種公式法都可以解標準型的一元三次方程。用卡爾丹公式解題方便,相比之下,盛金公式雖然形式簡單,但是整體較為冗長,不方便記憶,但是實際解題更為直觀。
一元三次方程,化簡過程,如圖,求一元三次方程如何化簡為因式乘積形式的方法
1 樓主所給只是一個多項式,不是方程 2 樓主所給不是 三次 而是四次。另 化簡是什麼意思?樓主所給已經是最簡式,無需化簡!是要因式分解吧?劉關張三英戰呂布十八鎮諸侯多位上將,關羽自告奮勇卻因自身的地位而被眾諸侯所叱,唯曹操賞識人才,斟熱酒令出戰。酒尚溫,關羽已斬華雄而歸。隨後,呂布騎赤兔馬親出虎牢...
一元三次方程怎麼證明恰有根,一元三次方程怎麼證明恰有三個根
根據代數基本定理可直接得出該結論.代數學基本定理 任何復係數一元n次多項式 方程在複數域上至少有一根 n 1 由此推出,n次復係數多項式方程在複數域內有且只有n個根 重根按重數計算 任意一元三次方程是否至少有一個實數解?如何證明?補充 bai 由於是用手機發的du,我就短說,三次方程的zhi根可能是...
一元三次方程怎麼解決
一元三次方程的標準形式為ax 3 bx 2 cx d 0,將方程兩邊同時除以最高項係數a,三次方程變為x 3 bx 2 a cx a d a 0,所以三次方程又可簡寫為x 3 bx 2 cx d 0 一元三次方程解法思想是 通過配方和換元,使三次方程降次為二次方程求解 只 含有一個 未知數 即 元 ...