1樓:匿名使用者
大學高數第一章主要是複習,中學所學的基本函式,它們的定義、性質、影象等。
還有: 反函式、複合函式的概念。包括:冪函式,指數函式,對數函式,三角函式,反三角函式。然後講:極限, 連續性, 導數, 積分 ……
先作預習會有幫助的, 但是別忘了高等數學是要學兩個學期的,短期強化學習不可能效果好的。也許現在困擾你的,並不是高等數學(「重計算、輕推理」)教學大綱的重點知識。
等到真正入學之後,記得:多做題目,光看例題沒有用。「看著會不等於真的會」。
要注意老師的講解,還有對各部分內容的要求到底是怎樣的,要注意教學大綱。不能眉毛鬍子一把抓,要知道重點和難點在**。還要注意學習方法和學習習慣的改變。
大家公認好的參考教材: 同濟大學第六版 《高等數學》。
2樓:匿名使用者
你的問題很普遍,尤其是初學高等數學的同學。學習習慣因人而異,主要還是你自己把握。簡單說首先要搞懂基本概念,尤其是極限、有界、連續、可微、可導、可積等非常重要的概念,清楚它們間的關係。
在此基礎上再去提高計算能力,尤其要多看例題,積累解題方法。
你說自己記不住或者看不懂定理推導,慢慢來不用擔心,這並不說定理證明不重要,而是不要把精力放在記住它,而應該去理解它,以後能做到記住定理的條件結論,理解定理的意義和證明過程就可以了。剛開始的時候,極限的概念是比較難以準確把握的,尤其是用定義去證明一些問題的時候,這裡沒有什麼好辦法,多看幾道例題,腦子裡想象一下極限的過程,這時候抽象思維和邏輯推導能力是很重要的。這是高等數學學習的第一個難關也是最重要的一個知識點,跨過去後面的學習就輕鬆很多了。
3樓:匿名使用者
這些推導和定理最好是先背下來,然後聽老師講一邊,最後自己在使者推導一下,就應該能記著了,希望能對你有所幫助。
4樓:
別看了,主要是看大學的老師。。如果你遇到不好的,再自學。或者去旁聽
高等數學學習的問題
5樓:匿名使用者
其實,你大可不必自己一個人去琢磨高數,自己看高數就是事半功倍,高數的理論很深奧內,但容是我們用的時候大可不必十分知道那個定理是怎麼來的,那個公式是怎麼得到的,我們要知道的是怎麼取用這些公式和定理。所以,你要做的一點就是上課認真聽講,勤於做筆記,然後做大量的聯絡,唯有這樣,才是通向高數成功的捷徑。可能,現在已經是寒假,對於大一上的高數都忘記的差不多了,其實,我的建議是,你可以先做例題,當例題做不來,看解答,連解答都看不懂的時候,你回過頭來看有關這一例題的理論基礎,這樣可能效率會高點。
希望,高數不在困惑。
6樓:
樓主,如果能找到一個高數學的可以的朋友一起,讓他平時多指導指導,能好一些,我當時大學時就幫助過一位,效果不錯.自己也能檢查到自己缺少那一部分.可以做到互助,那人應該願意.
祝樓主早日重拾信心.
7樓:決戰羅馬
不理解的地方可以在理解的基礎上把它記到筆記本上,合理的運用筆記本是很好的方法,到複習的時候,筆記本就是自己很好的複習資料了,很多自己的思路都在上面了
8樓:此丫丫
【看書的時候有好多不懂的地方,要花好長時間自己去琢磨,好不容易想明白了,過了一段時間又不會用了甚至是忘了...】
書只看一遍是不夠的
高等數學的問題,高等數學問題!
兩個問題的答案都是否,都存在反例。下面是我給出的反例,你可以自己驗證一下,並不困難。先解決第二個問題 首先可微的定義中就是存在x y方向的偏導數根據 定理1 可微的必要條件 若函式z f x,y 在點p可微,則 1 函式在點p連續 2 函式在p點可偏導 所以可微可以推斷出函式在p點的偏導數連續 再來...
高等數學問題,高等數學問題
a 到 b 的對映,a 是定義來域,但 b 未必是源值域,它是包含值域的集合。如 f x x 2 是 r 到 r 的對映,但值域只是非負實數。值域是集合 y y f x x a 就是 x 取遍定義域後對應的 y 的全體。f x 在x0的某一bai去心鄰域內有界du是limf x 存在的必要條件,zh...
高等數學問題,高等數學問題
第一題解答 f x dx a b f x a b f b f a 第二題解答 x 2 dx 1 3 2 x dx 1 2 x 2 dx 2 3 2x x 1 2 x 2x 2 3 2 3 2 5 2 2 1第三題解答 x 1 dx 0 2 1 x dx 0 1 x 1 dx 1 2 x x 0 1 ...