問高數問題,求大佬回答,第一類積分的對稱性是偶倍奇零,第二類符合偶零奇倍嗎

2021-03-28 03:27:20 字數 5675 閱讀 8342

1樓:上海皮皮龜

第二類積分與積分方向(dx可能大於0,ke能小於0)有關,即使是奇函式,如積分方向恰相反,則一般不等於0. 第一類積分的積分元(ds)橫大於0,則奇函式在對稱區間上的積分等於0.

一道高數題,求證明定積分偶倍積零的性質,如圖,我已經求得奇零的證明,求給出偶倍的證明,謝謝

2樓:匿名使用者

∫[-a,a]f(x)dx=∫[-a,0]f(x)dx+∫[0,a]f(x)dx

=∫[a,0]f(-u)d(-u)+∫[0,a]f(x)dx=∫[0,a]f(u)du+∫[0,a]f(x)dx=2∫[0,a]f(x)dx

求大佬,這道題怎麼用第一類曲線積分的對稱性做?

3樓:匿名使用者

您好,答案如圖所示:

注意x和y都是奇函式,於是x+y也是

高數 這道題為什麼不能用偶倍奇零

4樓:heitaliya_萌

望採納~有什麼問題可以繼續問哦~(ง •̀_•́)ง

求詳細介紹關於高數第一類第二類曲線曲面積分 對稱性 以及輪換對稱性謝謝大家了!

5樓:你愛的是小灰嗎

1、第一型曲面積分:又稱對面積的曲面積分

定義在曲面上的函式關於該曲面的積分。第一型曲線積分物理意義**於對給定密度函式的空間曲面,計算該曲面的質量。

2、第二型曲面積分是關於在座標面投影的曲面積分,其物理背景是流量的計算問題。

第二型曲線積分與積分路徑有關,第二型曲面積分同樣依賴於曲面的取向,第二型曲面積分與曲面的側有關,如果改變曲面的側(即法向量從指向某一側改變為指另一側),顯然曲面積分要改變符號,注意在上述記號中未指明哪側。

必須另外指出,第二型曲面積分有類似於第二型曲線積分的一些性質。

3、數學上,對稱性由群論來表述。群分別對應著伽利略群,洛倫茲群和u(1)群。對稱群為連續群和分立群的情形分別被稱為連續對稱性和分立對稱性。

德國數學家威爾(hermann weyl)是把這套數學方法運用於物理學中並意識到規範對稱重要性的第一人。

4、積分輪換對稱性是指座標的輪換對稱性,簡單的說就是將座標軸重新命名,如果積分割槽間的函式表達不變,則被積函式中的x,y,z也同樣作變化後,積分值保持不變。

擴充套件資料:

1、對稱操作:

當分子有對稱中心時,從分子中任意一原子至對稱中心連一直線,將次線延長,必可在和對稱中心等距離的另一側找到另一相同原子,即每一點都關於中心對稱。依據對稱中心進行的對稱操作為反演操作,是按照對稱中心反演,記為i;n為偶數時in=e,n為奇數時in=i

反軸:反軸in的基本操作為繞軸轉360°/n,接著按軸上的中心點進行反演,它是c1n和i相繼進行的聯合操作:i1n=ic1n; 繞in軸轉360°/n,接著按中心反演。

映軸:映軸sn的基本操作為繞軸轉360°/n,接著按垂直於軸的平面進行反映,是c1n和σ相繼進行的聯合操作: s1n=σc1n;繞sn軸轉360°/n,接著按垂直於軸的平面反映。

2、第一型曲面積分和第二型曲面積分的區別

1、第一類沒方向,有幾何意義和物理意義;第二類有方向,只有物理意義。

2、一類曲線是對曲線的長度,二類是對x,y座標.例已知一根線的線密度,求線的質量,就要用一類.已知路徑曲線方程,告訴你x,y兩個方向的力,求功,就用二類.

二類曲線也可以把x,y分開,一二類曲線積分之間就差一個餘弦比例。

一二類曲面積分割槽別,一類是對面積的積分,二類是對座標的.如已知面密度,求面質量,就用一類.已知x,y,z分別方向上的流速和麵方程,求流量,就用第二類.

同理,x,y,z方向也是可以分開的。

6樓:夏娃的夏天

1、第一型曲面積分:

定義在曲面上的函式關於該曲面的積分。第一型曲線積分物理意義**於對給定密度函式的空間曲面,計算該曲面的質量。

又稱:對面積的曲面積分;

物理意義:空間曲面s的「質量」。

2、第二型曲面積分:

第二型曲面積分:是關於在座標面投影的曲面積分,其物理背景是流量的計算問題。

第二型曲線積分與積分路徑有關,第二型曲面積分同樣依賴於曲面的取向,第二型曲面積分與曲面的側有關。

如果改變曲面的側(即法向量從指向某一側改變為指另一側),顯然曲面積分要改變符號,注意在上述記號中未指明哪側,必須另外指出,第二型曲面積分有類似於第二型曲線積分的一些性質。

3、對稱性:

數學上,對稱性由群論來表述。

群分別對應著伽利略群,洛倫茲群和u(1)群。對稱群為連續群和分立群的情形分別被稱為連續對稱性(continuous symmetry)和分立對稱性(discrete symmetry)。

德國數學家威爾(hermann weyl)是把這套數學方法運用於物理學中並意識到規範對稱重要性的第一人。

當分子有對稱中心時,從分子中任意一原子至對稱中心連一直線,將次線延長,必可在和對稱中心等距離的另一側找到另一相同原子,即每一點都關於中心對稱。

依據對稱中心進行的對稱操作為反演操作,是按照對稱中心反演,記為i;n為偶數時in=e,n為奇數時in=i。

4、積分輪換對稱性:

它是指座標的輪換對稱性,簡單的說就是將座標軸重新命名,如果積分割槽間的函式表達不變,則被積函式中的x,y,z也同樣作變化後,積分值保持不變。

擴充套件資料

曲面積分:

定義在曲面上的函式或向量值函式關於該曲面的積分。曲面積分一般分成第一型曲面積分和第二型曲面積分。

第一型曲面積分物理意義**於對給定密度函式的空間曲面,計算該曲面的質量。第二型曲面積分物理意義**對於給定的空間曲面和流體的流速,計算單位時間流經曲面的總流量。

第二型曲面積分的物理背景是流量的計算問題。設某流體的流速為v=((p(x,y,z),q(x,y,z),r(x,y,z))從某雙側曲面s的一側流向另一側,求單位時間內流經該曲面的流量。

由於是有向曲面,設它的單位法向量為n=(coα,cosβ,cosγ),取曲面面積微元ds,則所求的單位時間內流量微元就是de=(v·n)ds。

鏡面對稱:

鏡面是平分分子的平面,在分子中除位於經面上的原子外,其他成對地排在鏡面兩側,它們通過反映操作可以復原。

反映操作是每一點都關於鏡面對稱,記為σ;n為偶數時σn=e,n為奇數時σn=σ。和主軸垂直的鏡面以σh表示;通過主軸的鏡面以σv表示;通過主軸,平分副軸夾角的鏡面以σd 表示。

積分輪換對稱性特點及規律:

(1) 對於曲面積分,積分曲面為u(x,y,z)=0,如果將函式u(x,y,z)=0中的x,y,z換成y,z,x後,u(y,z,x)仍等於0,即u(y,z,x)=0,也就是積分曲面的方程沒有變。

那麼在這個曲面上的積分 ∫∫f(x,y,z)ds=∫∫f(y,z,x)ds;如果將函式u(x,y,z)=0中的x,y,z換成y,x,z後,u(y,x,z)=0,那麼在這個曲面上的積分 ∫∫f(x,y,z)ds=∫∫f(y,x,z)ds;

如果將函式u(x,y,z)=0中的x,y,z換成z,x,y後,u(z,x,y)=0,那麼在這個曲面上的積分 ∫∫f(x,y,z)ds=∫∫f(z,x,y)ds ,同樣可以進行多種其它的變換。

(2) 對於第二類曲面積分只是將dxdy也同時變換即可 ,比如:

如果將函式u(x,y,z)=0中的x,y,z換成y,z,x後,u(y,z,x)=0,那麼在這個曲面上的積分:

∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。

(3) 將(1)中積分曲面中的z去掉,就變成了曲線積分滿足的輪換對稱性:積分曲線為u(x,y)=0,如果將函式u(x,y)=0中的x,y換成y,x後,仍滿足u(y,x)= 0,那麼在這個曲線上的積分 ∫f(x,y)ds=∫f(y,x)ds;

實際上如果將函式u(x,y)=0中的x,y換成y,x後,仍滿足u(y,x)=0,則意味著積分曲線關於直線y=x對稱 。第二類三維空間的曲線積分跟(2)總結相同同。

但第二類平面上的曲線積分不同∫f(x,y)dx=-∫f(y,x)dy.(注意前面多了一個負號)

(4) 二重積分和三重積分都和(1)的解釋類似,也是看積分域函式將x,y,z更換順序後,相當於將座標軸重新命名,積分割槽間沒有發生變化,則被積函式作相應變換後,積分值不變。

第一型和第二型曲面積分的對稱性不一樣嗎?

7樓:匿名使用者

第一類曲面積分才有通常說的奇偶對稱性(偶倍奇零),第二類曲面積分不具備奇偶對稱性,而是根據曲面的正反側決定的,其性質剛好相反:若積分曲面對稱,被積函式關於相應變數為奇函式,積分為半區間的2倍;若為偶函式,則積分等於0。參考下面分析:

8樓:勇士小子最帥

你的第二個**是什麼書上的

9樓:adx天暴

你這本教材是什麼版本的

求高數帝,偶倍奇零是啥意思

10樓:薔祀

偶倍奇零是指特殊情況下的定積分公式。如果f(x)在x∈[-a,a]這一區間上(a>0)上是連續的回

:1、如果f(x)是偶函答數,那麼 則有

2、如果f(x)是奇函式,那麼

兩者合起來稱為偶倍奇零。

擴充套件資料

偶倍奇零原則的應用:

在計算定積分,若滿足①積分割槽間是關於原點對稱 ②在定義區間上連續 ③函式不為非奇非偶。則可靈活的運用偶倍奇零。

偶倍奇零滿足條件是:首先必須滿足積分上下限關於原點對稱(-a,a),當被積函式是關於積分變數為奇函式時,則積分為零,當被積函式是關於積分變數為偶函式時,則積分為其單區間(0,a)上值的兩倍。

11樓:我是誰

偶函式關於原點對稱的區間[-a,a]的定積分,是[0,a]區間定積分的2倍。

奇函式關於原點對稱的區間[-a,a]的定積分是0。

兩者合起來稱為偶倍奇零。

12樓:匿名使用者

二重積分偶倍奇零是指:如果積分割槽域關於x=0或y=0對稱,而且被積函式是關於x或y的奇函式,則二重積分為0,若被積函式是關於x或y的偶函式,則為其中一半積分割槽域二重積分的2倍。

13樓:匿名使用者

偶倍奇零是指特殊情況下的定積分說的。

這兩條合起來就是所謂的偶倍奇零。

高數問題:第二型曲線積分的對稱性是怎麼樣的?

14樓:溪橋

1、第二類曲線積分中有關於對稱性的結論(積分曲線關於y軸對稱的情形)。

2、第二類曲線積分中關於對稱性的結論(積分曲線關於x軸對稱的情形)。

3、然後利用對座標的曲線積分的物理意義(變力沿曲線作功)給出上述部分結論的解釋。

4、在利用對稱性結論計算第二類曲線積分的典型例題(本題為考研試題)。

15樓:匿名使用者

不能一概而論說「第二型曲面積分的對稱性和第一型是反的」,總之結論要謹慎下,還要看積分變數和曲面的「側」。

例如對於∫∫<σ>rdxdy曲面σ關於xoy座標面對稱,側剛好相反,那麼就有r關於z的奇倍偶零。

而曲面σ關於xoy座標面對稱,側剛好相反,對於∫∫<σ>pdzdy,那麼對於p根本沒有必要討論其奇偶性。

第二型曲線積分有類似性質∫pdx+qdy+rdz,若l關於xoy座標面對稱,那麼只有對第三項∫rdz才能有r關於z的奇倍偶零。

求詳細介紹關於高數第一類第二類曲線曲面積分對稱性以及輪換對稱性謝謝大家了

1 第一型曲面積分 又稱對面積的曲面積分 定義在曲面上的函式關於該曲面的積分。第一型曲線積分物理意義 於對給定密度函式的空間曲面,計算該曲面的質量。2 第二型曲面積分是關於在座標面投影的曲面積分,其物理背景是流量的計算問題。第二型曲線積分與積分路徑有關,第二型曲面積分同樣依賴於曲面的取向,第二型曲面...

請教高人講解曲線積分和曲面積分第一類第二類都要

哥們給你都說了吧 第一類曲線積分,可以通過將ds轉化為dx或dt變成定積分來做,但是單純的第一類曲線積分和二重積分沒有關係,只有通過轉化為第二類曲線積分後,要是滿足格林公式或者斯托科斯公式條件,可以用公式轉化為簡單的曲面積分,再將曲面積分投影到座標面上轉化為二重積分來計算,這是第一類曲線積分和二重積...

高等數學第一類曲線積分的物理意義質心形心

使用輪換對稱性,觀察積分曲線的函式表示式,任意交換x,y,z的位置並不改變曲線,所以滿足輪換對稱性,所以 yds xds zds,於是 yds 1 3 x y z ds 1 3 0ds 0 為什麼高數計算形心和質心的公式是一樣的 因為高數裡面,認為物體的密度在每個地方都一樣。所以形心就是質心。數學二...