什麼叫積分,什麼叫微積分,什麼叫定積分,什麼叫不定積分,有什麼聯絡和區別

2021-03-20 02:23:13 字數 5183 閱讀 1416

1樓:冰極曉月

首先,微積分包括微分和積分,積分包括不定積分和定積分。

一、微分:

如果函式在某點處的增量可以表示成

△y=a△x+o(△x) (o(△x)是△x的高階無窮小)

且a是一個與△x無關的常數的話,那麼這個a△x就叫做函式在這點處的微分,用dy表示,即dy=a△x

△y=a△x+o(△x),兩邊同除△x有

△y/△x=a+o(△x)/△x,再取△x趨於0的極限有

lim△y/△x=lim[a+o(△x)/△x]=lima+lim[o(△x)/△x]=a+0

f'(x)=lim△y/△x=a

所以這裡就揭示出了,導數與微分之間的關係了,

某點處的微分:dy=f'(x)△x

通常我們又把△x叫自變數的微分,用dx表示 所以就有

dy=f'(x)dx.證明出了微分與導數的關係

正因為f'(x)=dy/dx,所以導數也叫做微商(兩個微分的商)

二、積分

求積分的過程,與求導的過程正好是逆過程,好加與減,乘與除的關係差不多。

1、不定積分:求一個函式f(x)的不定積分,就是要求出一個原函式f(x),使得f'(x)=f(x),

而f(x)+c(c為任意常數)就是不定積分∫f'(x)dx的所有原函式,

不定積分其實就是這個表示式:∫f'(x)dx

2、定積分:定積分與不定積分的區別是,定積分有上下限,∫(a,b)f'(x)dx

而不定積分是沒有上下限的,因而不定積分的結果往往是個函式,定積分的結果則是個常數,這點對解積分方程有一定的幫助。

三、聯絡和區別

微積分包括微分和積分,積分包括不定積分和定積分。

其中,不定積分沒有積分上下限,所得原函式後面加一個常數c;定積分是在不定積分的基礎上,加上了積分上下限,所得的是數。

dy/dx 叫導數,將dx乘到等式右邊,就是微分。

2樓:匿名使用者

積分是累加的一種形式,可以簡單看成是無限項無限小的和。

微積分是兩個東西的統稱,微分和積分,二者互為逆運算。

剛才說積分是一種特殊的累加運算,不定積分就是已知一個函式的導數,要求的原函式,因為這樣的原函式有無限多個(相差一個常數),所以叫不定。

那什麼叫做定積分呢?積分不是一種累加嗎,那定積分指定這種累加要從**開始,要到**結束,算出這個和。可以證明這個和是就是原函式在上下限的函式值的差(牛頓萊布尼茨定理),而這個原函式雖然有無限多個,但因為只是相差一個常數,所以這個差值是不變的,所以叫做定積分。

3樓:巴塞爾資本協議

如果你沒系統學過的話,你把以上的都叫積分。用到積分的也含有微分的知識,因此也會把積分說成微積分。至於定積分,不定積分是指積分有沒有指定積分上下限,有即定積分。

還有無窮積分是指上/下限是無窮大或無窮小。

定積分和微積分有什麼區別?

4樓:一鳴問神

定積分是變數限定在一定的範圍內的積分,有範圍的.微積分包括微分和積分,積分和微分互為逆運算,積分又包括定積分和不定積分,不定積分是沒範圍的

眾所周知,微積分的兩大部分是微分與積分。一元函式情況下,求微分實際上是求一個已知函式的導函式,而求積分是求已知導函式的原函式。所以,微分與積分互為逆運算。

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

定積分包含於微積分

微積分包括:微分,積分

積分又包括:定積分,不定積分

不定積分是隻有積分號,沒有積分上下限的那種積分

定積分是不但有積分號,還有積分上下限的那種積分

微分:設函式y=f(x)的自變數有一改變數△x,則函式的對應改變數△y的近似值f~(x)*△x叫做函式y的微分.(「~」表示導數)

記為 dy=f~(x)△x

可見,微分的概念是在導數概念的基礎上得到的.

自變數的微分的等於自變數的改變數,則

將△x用dx代之,則微分寫為dy=f~(x)dx

變形為:dy/dx=f~(x)

故導數又叫微商.

積分:它是微分學的逆問題.函式f(x)的全體原函式叫做f(x)的或f(x)dx的不定積分.記作 ∫f(x)dx.

若f(x)是f(x)的原函式,則有

∫f(x)dx=f(x)+c c為任意常數,稱為不定積分常數.

對於定積分,它的概念**不同於不定積分.定積分檎是從極限方面來.是從以「不變」代「變」,以「直」代「曲」求某個變化過程中無限多個微小量的和,最後取極限得到的.

所以不定積分與定積分不是僅差一個常數的問題,即使是在計算上僅差一常數,而且運演算法則也基本相同.它們之間建立關係是通過「牛頓-萊布尼茲公式」.公式是

非曲直 ∫f(x)dx=f(b)-f(a) 積分下限a,上限b

5樓:小想的小世界

微積分包括微分和積分,微分和積分的運算正好相反,二者互為逆運算。

積分又包括定積分和不定積分。

定積分是指有固定的積分割槽間,它的積分值是確定的。

不定積分沒有固定的積分割槽間,它的積分值是不確定的。

微積分的應用:

(1)運動中速度與距離的互求問題

(2)求曲線的切線問題

(3)求長度、面積、體積、與重心問題等

(4)求最大值和最小值問題(二次函式,屬於微積分的一類)

定積分的應用:

1,解決求曲邊圖形的面積問題

例:求由拋物線與直線圍成的平面圖形d的面積s.

2,求變速直線運動的路程

做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分

3,變力做功

定積分:數學定義:如果函式f(x)在區間[a,b]上連續,用分點xi將區間[a,b]分為n 個小區間,在每個小區間[xi-1,xi]上任取一點ri(i=1,2,3„,n) ,作和式f(r1)+...

+f(rn) ,當n趨於無窮大時,上述和式無限趨近於某個常數a,這個常數叫做y=f(x) 在區間上的定積分.。

記作/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 這裡,a 與 b叫做積分下限與積分上限,區間[a,b] 叫做積分割槽間,函式f(x) 叫做被積函式,x 叫做積分變數,f(x)dx 叫做被積式.

幾何定義:可以理解為在 oxy座標平面上,由曲線y=f(x)與直線x=a,x=b以及x軸圍成的曲邊梯形的面積值(一種確定的實數值)

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。

它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。

它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

6樓:貳玉蘭愛琴

微積分包括微分和積分

積分包括不定積分和定積分

其中不定積分沒有積分上下限

所得原函式後面加一個常數c

定積分是在不定積分的基礎上

加上了積分上下限

所得的是數

dy/dx

叫導數將dx乘到等式右邊

就是微分

7樓:甕信然程羅

微積分包括定積分,定積分屬於微積分範疇微分學的主要內容包括:極限理論、導數、微分等。

積分學的主要內容包括:定積分、不定積分等。

8樓:匿名使用者

微積分是這門課的名字,其中內容包括微分,導數,定積分,不定積分等;定積分為指定了積分上下限,可以給於具體值的積分形式

9樓:匿名使用者

微積分是微分和積分的合稱

積分包括定積分和不定積分

微分與積分是互為逆運算

導數,微分,積分之間有什麼聯絡和區別

10樓:匿名使用者

簡單的理解,導數和微分在書寫的形式有些區別,如y'=f(x),則為導數,書寫成dy=f(x)dx,則為微分。積分是求原函式,可以形象理解為是函式導數的逆運算。

通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx,而其導數則為:y'=f'(x)。

設f(x)為函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數),叫做函式f(x)的不定積分,數學表示式為:若f'(x)=g(x),則有∫g(x)dx=f(x)+c。

11樓:牙牙啊

導數、微分和積分都是一種運演算法則,和加減乘除是一個型別。當年牛頓搞的是導數,和積分。萊布尼茲從另一個角度也搞了研究,他是從微分的角度出發的,來搞微分和積分的。

雖然出發點不一樣,但導數和微分,二者在本質上是一樣的。僅僅表示形式不同。積分是導數(也是微分)的逆運算。

導數導數是微積分中的重要基礎概念。當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。 導數是函式的區域性性質。

一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函式進行區域性的線性逼近。

例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。 不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。

然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。

反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

微積分的定義,微積分是什麼?

微積分是數學的一個基礎學科 是高等數學中研究函式的微分 differentiation 積分 integration 以及有關概念和應用的數學分支。內容主要包括極限 微分學 積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式 速度 加速度和曲線的斜率等均可用一套通用的符號進行...

微積分符號什麼意思,微積分中是什麼意思

積分積累 相加每一小份相加起來 萊布尼茨於1675年以 omn.l 表示l的總和 積分 integrals 而omn為omnia 意即所有 全部 之縮寫。其後他又改寫為 以 l 表示所有l的總和 summa 為字母s的拉長。此外,他又於1694年至1695年之間,於 號後置一逗號,如 xxdx。至1...

微積分中的極限是什麼意思,微積分中的積分是什麼意思??

極限是微積分中的基礎概念,它指的是變數在一定的變化過程中,從總的來說逐漸穩定的這樣一種變化趨勢以及所趨向的值 極限值 極限的概念最終由柯西和魏爾斯特拉斯等人嚴格闡述。在現代的數學分析教科書中,幾乎所有基本概念 連續 微分 積分 都是建立在極限概念的基礎之上。微積分中的積分是什麼意思?積分是微積分學與...