微積分中的極限是什麼意思,微積分中的積分是什麼意思??

2021-03-19 18:20:08 字數 5213 閱讀 9686

1樓:千里揮戈闖天涯

極限是微積分中的基礎概念,它指的是變數在一定的變化過程中,從總的來說逐漸穩定的這樣一種變化趨勢以及所趨向的值(極限值)。

極限的概念最終由柯西和魏爾斯特拉斯等人嚴格闡述。在現代的數學分析教科書中,幾乎所有基本概念(連續、微分、積分)都是建立在極限概念的基礎之上。

微積分中的積分是什麼意思??

2樓:匿名使用者

積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的正實值函式,在一個實數區間上的定積分可以理解為在座標平面上,由曲線、直線以及軸圍成的曲邊梯形的面積值(一種確定的實數值)。

積分發展的動力源自實際應用中的需求。隨著科技的發展,很多時候需要知道精確的數值。要求簡單幾何形體的面積或體積,可以套用已知的公式。

比如一個長方體狀的游泳池的容積可以用長×寬×高求出。但如果游泳池是卵形、拋物型或更加不規則的形狀,就需要用積分來求出容積。

擴充套件資料

積分定義

1、黎曼積分

黎曼積分,也就是所說的正常積分、定積分。在實分析中,由黎曼創立的黎曼積分首次對函式在給定區間上的積分給出了一個精確定義。黎曼積分在技術上的某些不足之處可由後來的勒貝格積分得到修補。

2、勒貝格積分

勒貝格積分,是現代數學中的一個積分概念,它將積分運算擴充套件到任何測度空間中。在最簡單的情況下,對一個非負值的函式的積分可以看作是求其函式影象與軸之間的面積。勒貝格積分則將積分運算擴充套件到其它函式,並且也擴充套件了可以進行積分運算的函式的範圍。

3樓:匿名使用者

微分和積分是高等數學中的兩種運算,我舉個最通俗最簡單,但可能不是很恰當的例子:

一個玻璃杯,你把它摔碎了,這類似於微分,玻璃杯被拆分成粉末(微元)

將碎玻璃重新收集起來,這類似於積分,玻璃杯的微元被重新收集到一起

4樓:晚夏落飛霜

dx表示x變化無限小的量,其中d表示「微分」,是「derivative(導數)」的第一個字母。

當一個變數x,越來越趨向於一個數值a時,這個趨向的過程無止境的進行,x與a的差值無限趨向於0,就說a是x的極限。這個差值,稱它為「無窮小」,它是一個越來越小的過程,一個無限趨向於0的過程,它不是一個很小的數,而是一個趨向於0的過程。

如果x1與x2差距很小,這個小是有限的小。當x1與x2的差距在無止境的減小,無止境的靠近,在靠近的過程中,x1與x2的差距無止境的趨近於0。這時就寫成dx,也就是說,δx是有限小的量,

dx是無限小的量。

微分的幾何意義

設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。f'(x0)在表示曲線y=f(x)在切點m(x0,f(x0))處切線的斜率。當|δx|很小時,|δy-dy|比|δx|要小得多(高階無窮小),因此在點m附近,可以用切線段來近似代替曲線段。

由直線點斜式方程可知切線方程為:y-y0=f'(x0)(x-x0),兩條互相垂直的直線的斜率之積為-1,而切線與法線垂直,故法線方程為:y-y0=-1/f'(x0)*(x-x0)  (f'(x0)≠0)

5樓:閃亮的眼眸

能問出這樣好的問題的都是天才,我覺得所有進步都是從發現開始。。微積分我也一直不懂,直到有一天我的一個師兄告訴了我,內容不重要,關鍵是我覺得他說的很簡單,讓我這個智商不高的人一下子就明白了,先微再積,微就是微小化,也就是原先一個大的減成很多個小的,研究一個小的,積我原來以為是乘積的積,乘法。錯,原來積是加法,然後再把符合條件的加起來。。。

就是先減後加,下面有的拿個杯子摔碎了打比方回答你我覺得也是非常形象的,逆運算什麼更深層次的估計都對,還有就是先簡單的從語文字面上理解這三個字吧,極限就是字面意思。商怎麼除,無論分子多麼大分母多麼小比值都超不過某一個死數字,比如超不過3或者5.26這種。

永遠到不了3之外的4,5,6無窮大等等。哪怕分母小到穿到另外一邊無窮遠去了將要變化的這個量(y的變化量或者叫增量)也超不過某一個蓋子,到不了某些區域,翻不過如來手指外面。。。

6樓:匿名使用者

微積分主要有三大類分支:極限、微分學、積分學。微積分的基本理論表明了微分和積分是互逆運算。

牛頓和萊布尼茲發現了這個定理以後才引起了其他學者對於微積分學的狂熱的研究。這個發現使我們在微分和積分之間互相轉換。這個基本理論也提供了一個用代數計算許多積分問題的方法,該方法並不真正進行極限運算而是通過發現不定積分。

該理論也可以解決一些微分方程的問題,解決未知數的積分。微分問題在科學領域無處不在。

微積分的基本概念還包括函式、無窮序列、無窮級數和連續等,運算方法主要有符號運算技巧,該技巧與初等代數和數學歸納法緊密相連。

微積分被延伸到微分方程、向量分析、變分法、複分析、時域微分和微分拓撲等領域。微積分的現代版本是實分析。

[編輯]

極限微積分中最重要的概念是「極限」。微商(即導數)是一種極限.定積分也是一種極限.

從牛頓實際使用它到制定出周密的定義,數學家們奮鬥了200多年。現在使用的定義是維斯特拉斯於19世紀中葉給出的.

數列極限就是當一個有順序的數列往前延伸時,如果存在一個有限數,使這個數列可以無限接近這個數,這個數就是這個數列的極限。

微積分裡的極限的定義和理論是什麼?

7樓:徐天來

在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函式極限,分別定義如下。

首先介紹劉徽的"割圓術",設有一半徑為1的圓,在只知道直邊形的面積計算方法的情況下,要計算其面積。為此,他先作圓的內接正六邊形,其面積記為a1,再作內接正十二邊形,其面積記為a2,內接二十四邊形的面積記為a3,如此將邊數加倍,當n無限增大時,an無限接近於圓面積,他計算到3072=6*2的9次方邊形,利用不等式an+1n時,不等式

|xn - a|<ε

都成立,那麼就成常數a是數列|xn|的極限,或稱數列|xn|收斂於a。記為lim xn = a 或xn→a(n→∞)

數列極限的性質:

1.唯一性:若數列的極限存在,則極限值是唯一的;

2.改變數列的有限項,不改變數列的極限。

幾個常用數列的極限:

an=c 常數列 極限為c

an=1/n 極限為0

an=x^n 絕對值x小於1 極限為0

函式極限的專業定義:

設函式f(x)在點x。的某一去心鄰域內有定義,如果存在常數a,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ 時,對應的函式值f(x)都滿足不等式:

|f(x)-a|<ε

那麼常數a就叫做函式f(x)當x→x。時的極限。

函式極限的通俗定義:

1、設函式y=f(x)在(a,+∞)內有定義,如果當x→+∽時,函式f(x)無限接近一個確定的常數a,則稱a為當x趨於+∞時函式f(x)的極限。記作lim f(x)=a ,x→+∞。

2、設函式y=f(x)在點a左右近旁都有定義,當x無限趨近a時(記作x→a),函式值無限接近一個確定的常數a,則稱a為當x無限趨近a時函式f(x)的極限。記作lim f(x)=a ,x→a。

函式的左右極限:

1:如果當x從點x=x0的左側(即x〈x0)無限趨近於x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的左極限,記作x→x0-limf(x)=a.

2:如果當x從點x=x0右側(即x>x0)無限趨近於點x0時,函式f(x)無限趨近於常數a,就說a是函式f(x)在點x0處的右極限,記作x→x0+limf(x)=a.

注:若一個函式在x(0)上的左右極限不同則此函式在x(0)上不存在極限

函式極限的性質:

極限的運演算法則(或稱有關公式):

lim(f(x)+g(x))=limf(x)+limg(x)

lim(f(x)-g(x))=limf(x)-limg(x)

lim(f(x)*g(x))=limf(x)*limg(x)

lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等於0 )

lim(f(x))^n=(limf(x))^n

以上limf(x) limg(x)都存在時才成立

lim(1+1/x)^x =e

x→∞無窮大與無窮小:

一個數列(極限)無限趨近於0,它就是一個無窮小數列(極限)。

無窮大數列和無窮小數列成倒數。

微積分裡的兩個重要極限指什麼

8樓:薔祀

兩個重要極限:

極限是微積分中的基礎概念,它指的是變數在一定的變化過程中,從總的來說逐漸穩定的這樣一種變化趨勢以及所趨向的值(極限值)。極限的概念最終由柯西和魏爾斯特拉斯等人嚴格闡述。在現代的數學分析教科書中,幾乎所有基本概念(連續、微分、積分)都是建立在極限概念的基礎之上。

擴充套件資料

十七世紀以來,微積分的概念和技巧不斷擴充套件並被廣泛應用來解決天文學、物理學中的各種實際問題,取得了巨大的成就。但直到十九世紀以前,在微積分的發展過程中,其數學分析的嚴密性問題一直沒有得到解決。

十八世紀中,包括牛頓和萊布尼茲在內的許多大數學家都覺察到這一問題並對這個問題作了努力,但都沒有成功地解決這個問題。

整個十八世紀,微積分的基礎是混亂和不清楚的,許多英國數學家也許是由於仍然為古希臘的幾何所束縛,因而懷疑微積分的全部工作。

這個問題一直到十九世紀下半葉才由法國數學家柯西得到了完整的解決,柯西極限存在準則使得微積分注入了嚴密性,這就是極限理論的創立。極限理論的創立使得微積分從此建立在一個嚴密的分析基礎之上,它也為20世紀數學的發展奠定了基礎。

第一個為補救第二次數學危機提出真正有見地的意見的是法國數學家達朗貝爾。他在2023年指出,必須用更可靠的理論去代替當時使用的粗糙的極限理論。但是他本人未能提供這樣的理論。

最早使微積分嚴格化的是拉格朗日。

為了避免使用無窮小推理和當時還不明確的極限概念,拉格朗日曾試圖把整個微積分建立在泰勒公式的基礎上。但是,這樣一來,考慮的函式範圍太窄了,而且不用極限概念也無法討論無窮級數的收斂問題,所以,拉格朗日的以冪級數為工具的代數方法也未能解決微積分的奠基問題。

到了19世紀,出現了一批傑出的數學家,他們積極為微積分的奠基工作而努力,其中包括了捷克的哲學家波爾查諾,他曾著有《無窮的悖論》,明確地提出了級數收斂的概念,並對極限、連續和變數有了較深入的瞭解。

分析學的奠基人,法國數學家柯西在1821—2023年間出版的《分析教程》和《無窮小計算講義》是數學史上劃時代的著作。在那裡他給出了數學分析一系列的基本概念和精確定義。

參考資料

微積分符號什麼意思,微積分中是什麼意思

積分積累 相加每一小份相加起來 萊布尼茨於1675年以 omn.l 表示l的總和 積分 integrals 而omn為omnia 意即所有 全部 之縮寫。其後他又改寫為 以 l 表示所有l的總和 summa 為字母s的拉長。此外,他又於1694年至1695年之間,於 號後置一逗號,如 xxdx。至1...

微積分的定義,微積分是什麼?

微積分是數學的一個基礎學科 是高等數學中研究函式的微分 differentiation 積分 integration 以及有關概念和應用的數學分支。內容主要包括極限 微分學 積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函式 速度 加速度和曲線的斜率等均可用一套通用的符號進行...

微積分 這樣的下標是什麼意思,複變函式中積分中的字母下標是什麼意思

指的是在 1,1,2 點處的值,也就是把這個座標分別以x,y,z代入前面的式子中 積分中的這個 符號加上它的上標和下標到底表示什麼意思啊?積分中的這個 符號加上它的上標和下標 表示在上標和下標的區間內的定積分.例設f x 的原函式為f x 則 a b f x dx f b f a 大概你還只學到導數...