1樓:風中_誓言
d表示「微分」,「微分」是一個過程,是無止境的「分割」,無止境的「區分」的過程
δ表示增量的概念,如果x1與x2差距很小,這個小是有限的小。當x1與x2的差距在無止境的減小,無止境的靠近,在靠近的過程中,x1與x2的差距無止境的趨近於0。這時我們寫成dx,也就是說,δx是有限小的量,dx是無限小的量
2樓:軍代芹亓進
解答:搞清兩個概念就能理解d的含義了。
1、增量的概念:δx=
x2-x1,δy=y2
-y1這裡的δ就是增量的意思,只要是後面的量減前面的量,無論正負都叫增量。
2、無限小的概念:
當一個變數x,越來越趨向於一個數值a時,這個趨向的過程無止境的進行,
x與a的差值無限趨向於0,我們就說a是x的極限。
這個差值,我們稱它為「無窮小」,它是一個越來越小的過程,一個無限趨
向於0的過程,它不是一個很小的數,而是一個趨向於0的過程。
3、δ一方面表示增量的概念,如果x1與x2差距很小,這個小是有限的小。只要
寫得出來,無論多少位小數點,只要你寫得出,只要你的筆一停,都是有限的小。
當x1與x2的差距在無止境的減小,無止境的靠近,在靠近的過程中,x1與x2
的差距無止境的趨近於0。這時我們寫成dx,也就是說,δx是有限小的量,
dx是無限小的量。
4、d的**,本來是
difference
=差距。當此差距無止境的趨向於0時,演變
為differentiation,
就變成了無限小的意思,稱為「微分」。
「微分」是一個過程,是無止境的「分割」,無止境的「區分」的過程。
微積分中的d是什麼含義啊?
3樓:暴走少女
2023年萊布尼茲分別引入「dx」及「dy」以表示x和y的微分(differentials),始見於他在2023年出版的書中,這符號一直沿用至今。
微分符號d取英文differential,differentiation的首個字母(difference有差距,差額的意思),其中與微分概念及符號d相關的英文單詞有divide,decrease,delta等.另外,符號d又叫微分運算元。
擴充套件資料:
一、微積分產生
到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要型別的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。
第二類問題是求曲線的切線的問題。第三類問題是求函式的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。
二、積分相關
1、定積分和不定積分
積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,定積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。
一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。
其中:[f(x)+c]'=f(x)
一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。
定積分和不定積分的定義迥然不同,定積分是求圖形的面積,即是求微元元素的累加和,而不定積分則是求其原函式,而牛頓和萊布尼茨則使兩者產生了緊密的聯絡(詳見牛頓-萊布尼茨公式)。
2、常微分方程與偏微分方程
含自變數、未知函式和它的微商(或偏微商)的方程稱為常(或偏)微分方程。未知函式為一元函式的微分方程,稱為常微分方程。未知函式為多元函,從而出現多元函式的偏導數的方程,稱為偏微分方程。
4樓:安克魯
解答:搞清兩個概念就能理解d的含義了。
1、增量
的概念:
δx = x2 - x1,δy = y2 - y1
這裡的δ就是增量的意思,只要是後面的量減前面的量,無論正負都叫增量。
2、無限小的概念:
當一個變數x,越來越趨向於一個數值a時,這個趨向的過程無止境的進行,
x與a的差值無限趨向於0,我們就說a是x的極限。
這個差值,我們稱它為「無窮小」,它是一個越來越小的過程,一個無限趨
向於0的過程,它不是一個很小的數,而是一個趨向於0的過程。
3、δ一方面表示增量的概念,如果x1與x2差距很小,這個小是有限的小。只要
寫得出來,無論多少位小數點,只要你寫得出,只要你的筆一停,都是有限的小。
當x1與x2的差距在無止境的減小,無止境的靠近,在靠近的過程中,x1與x2
的差距無止境的趨近於0。這時我們寫成dx,也就是說,δx是有限小的量,
dx是無限小的量。
4、d的**,本來是 difference = 差距。當此差距無止境的趨向於0時,演變
為 differentiation, 就變成了無限小的意思,稱為「微分」。
「微分」是一個過程,是無止境的「分割」,無止境的「區分」的過程。
這方面的細細斟酌是非常值得的,要全部寫出,就是一本《數學分析》,也就是一本厚厚的《微積分》了。樓主若想仔細研究,有任何問題,請hi我,我為你詳細解釋。
5樓:華科遊子
是天才的萊布尼茨提出的微分符號,比牛頓也強哦;它作用在因變數x時表示x的微小增量δx;作用在f(x)上表示f(x+δx)-f(x). 其中δx是無限趨近於0的量
6樓:匿名使用者
應該是由δ演變來的,為了便於書寫。表示數值的微小增量。
7樓:匿名使用者
differentiation 微分
d為「微分」英文單詞的首寫字母
微積分裡面的那個小「d」究竟是什麼東西,怎麼運算
8樓:吶吶
那個完全不用糾結,因為在具體運算的時候是一般不需要代那個公式算,按照一般求導法則算就可以了
9樓:匿名使用者
d+value表示value的差值,那麼d就是表示求差值的運算,這個運算後面可以是一個量,也可以是個函式,這有什麼糾結的?
微積分中d是什麼意思
10樓:匿名使用者
解答:搞清兩個概念就能理解d的含義了。
1、增量的概念:
δx = x2 - x1,δy = y2 - y1
這裡的δ就是增量的意思,只要是後面的量減前面的量,無論正負都叫增量。
2、無限小的概念:
當一個變數x,越來越趨向於一個數值a時,這個趨向的過程無止境的進行,
x與a的差值無限趨向於0,我們就說a是x的極限。
這個差值,我們稱它為「無窮小」,它是一個越來越小的過程,一個無限趨
向於0的過程,它不是一個很小的數,而是一個趨向於0的過程。
3、δ一方面表示增量的概念,如果x1與x2差距很小,這個小是有限的小。只要
寫得出來,無論多少位小數點,只要你寫得出,只要你的筆一停,都是有限的小。
當x1與x2的差距在無止境的減小,無止境的靠近,在靠近的過程中,x1與x2
的差距無止境的趨近於0。這時我們寫成dx,也就是說,δx是有限小的量,
dx是無限小的量。
4、d的**,本來是 difference = 差距。當此差距無止境的趨向於0時,演變
為 differentiation, 就變成了無限小的意思,稱為「微分」。
「微分」是一個過程,是無止境的「分割」,無止境的「區分」的過程。
微積分裡 dx是什麼意思 就是d什麼的 都是什麼意思?
11樓:匿名使用者
d表示極小的變化量,
dx表示 x變化極小量;
dy表示,當x變化極小後,相應的y發生很小的變化.
d後面跟一個x的表示式,當x變化極小後,相應的 表示式值 發生很小的變化。
12樓:匿名使用者
它表示x的一個無窮小變化量
請問高等數學中dx dy的那個d是什麼意思
13樓:匿名使用者
d是取無窮小量的意思,數學裡邊把它叫微分.
dy就是對y取無窮小量,dx就是對x取無窮小量.
dy/dx就是兩個無窮小量的比值,也就是y關於x的變化率,也叫關於x的導函式,簡稱導數.
14樓:匿名使用者
d:沒有意義,可以理解為微分符號,後跟微分變數.如d(x^2)表示函式x^2的微分
dx:其
一、可以理解為對於變數x的微分;其
二、由於x通常作為自變數,因此也可以理解為對自變數x的微分(即對x軸的微分量)
d/dx:沒有意義,可以理解為某個函式對於變數x的導數(也叫微商,即微分的商),後跟微分函式.如:(d/dx)(x^2)表示函式x^2對於變數x的導數
dy/dx:表示關於x的函式y對自變數x的導數,再不會引起混淆的前提下也可以表示為y
15樓:劉邦的家
不能分開來理解,dx表示自變數x的微元,即變化幅度很小的一段,dy同理
16樓:799145494q我吧
d是個符號,求導符號,後面還有個偏導符號
17樓:匿名使用者
d源於拉丁語differentia(差),d/dx是微分運算元,大概意思是對關於x的函式求導吧
18樓:匿名使用者
differential
19樓:菜牙是菜牙
d沒有什麼意義,xy是變數
20樓:enjoy有魚
無窮小量是一個函式,怎麼可以說對某個函式取無窮小量呢?
微積分中dx是什麼意思。d/dx 又是什麼意思
21樓:墨汁諾
d就是德爾塔,dx就是x的微元,就
是很小的x變數。微積分就是微元法的應用,之所以表示成dx/dy,就是為了微分方程做準備的。
d表示極小的變化量,
dx表示 x變化極小量;
dy表示,當x變化極小後,相應的y發生很小的變化.
d後面跟一個x的表示式,當x變化極小後,相應的 表示式值 發生很小的變化。
22樓:餘生啊卿
d【f(x)】=f』(x)dx
這個知道吧
d/dx就是對後面跟著的式子求導
23樓:匿名使用者
這個d/dx就是求微分的符號,就相當於你的求導上的那一點,f'(x)=dy/dx=df(x)/dx,你已經預設了f(x)=y的
24樓:匿名使用者
dx是自變數的微分,也就是δx,d/dx是把跟在後面的那個式子對x求導,也可以把跟在後面的式子寫在分子的d後面,意思一樣。
25樓:任癸
那個……d大小寫是不一樣的……小寫是求微分,大寫可能是臨時定義的運算元……
26樓:兵兵有禮啦
dy/dx就是相當於求導啦 dx可能是微分還是要你求積分啦
微積分中的極限是什麼意思,微積分中的積分是什麼意思??
極限是微積分中的基礎概念,它指的是變數在一定的變化過程中,從總的來說逐漸穩定的這樣一種變化趨勢以及所趨向的值 極限值 極限的概念最終由柯西和魏爾斯特拉斯等人嚴格闡述。在現代的數學分析教科書中,幾乎所有基本概念 連續 微分 積分 都是建立在極限概念的基礎之上。微積分中的積分是什麼意思?積分是微積分學與...
微積分符號什麼意思,微積分中是什麼意思
積分積累 相加每一小份相加起來 萊布尼茨於1675年以 omn.l 表示l的總和 積分 integrals 而omn為omnia 意即所有 全部 之縮寫。其後他又改寫為 以 l 表示所有l的總和 summa 為字母s的拉長。此外,他又於1694年至1695年之間,於 號後置一逗號,如 xxdx。至1...
微積分定積分中那個d總是搞不清楚實際意義如果出現這個我知道該怎麼辦 可是就是不懂 能
d就可以理解為導數的意思,對誰求導d後面就是誰,有dx,dy,dz 等等 就是對d後面那個求導的意思 微積分中的d是什麼意思,剛開始學,公式什麼的基本會用了,可一直搞不清楚這個d是什麼意思?是differential的縮寫 這個單詞的意思就是微分 微積分中的那個 d 是個什麼意思?d表示 微分 微分...