二重積分被積函式是1為什麼代表求積分割槽域面積

2021-03-19 18:36:48 字數 3905 閱讀 5110

1樓:匿名使用者

你要從二重積分積分的意義和本質上理解較為簡單。

給你個對二重積分本質的比較形象的理解,就是要充分理解這張圖。

向左轉|向右轉

z=f(x,y)就是積分函式,他是個由x,y共同決定的算式。

積分的過程就是:

把xoy這個平面,無限的分成一堆小區域(你可以理解為一堆小圓圈或者小方格),把每個小區域的面積,乘以這個小區域對應的f(x,y)。最後把這些值都加起來。

如果f(x,y)是個常數k呢,那麼結果就是:每個小區域的面積都乘以這個不變的常數,然後把他們加起來。這樣我們就可以把這個常數k提出來。

積分結果為:常數k*所有小面積的加和。

因為所有小面積的加和就是整個積分割槽域的面積,所以,積分結果就為:

整個積分割槽域面積的k倍。(你之前的描述是不準確的)

其實就是一個以整個積分割槽域為橫截面,高度為k的一個柱體的體積。(注意,從意義上說,二重積分積出來的都是體積,不是面積,只不過柱體的體積就等於面積的k倍)

這樣應該可以讓你從本質上,直觀的理解二重積分,也就知道了你問的那個問題了。

2樓:匿名使用者

二重積分的幾何意義一般

表示幾何圖形的體積 如果被積函式為1 那麼它所表示的為 以區域d為地面積 以高為1的幾何圖形的體積。體積在數值上等於區域d的表面積。所以當二重積分被積函式是1代表求積分割槽域面積

舉例 地面積為4 高為1的長方體 體積為4 在數值上等於底面積

3樓:路長順毋橋

積分割槽域不是積分面積。積分割槽域是指,x和y的範圍。但是二重積分求的是z。

由x和y共同決定的z。

二重積分積出來是體積。一重積分積出來才是面積。三重四重的看具體題目吧。至少在二維和三維座標表示不出來。

這樣說吧,比如一個柱形體,內部密度具有和幾何位置相關的密度函式(即每一點密度不是均等的,而是隨函式變化的)。那麼就要用到三重積分求重量了。明白啵?

二重積分什麼時候可以直接表示區域面積?是被積函式是1的時候?

4樓:是你找到了我

二重積分被積函式等於1時,可以直接表示區域面積;是被積函式是1的時回候。因為二重積答分的面積微元dxdy就表示積分割槽域微元的面積,所以被積函式為1時,直接積分就得到總的面積。

二重積分的本質是求曲頂柱體體積。重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。

當被積函式大於零時,二重積分是柱體的體積;當被積函式小於零時,二重積分是柱體體積負值。

5樓:匿名使用者

是的,二重積分被積函式等於1時,可以直接表示區域面積。

雖然還有其它情況二重積分值也可能會等於區域面積,但這不過是一種計算結果,而不能【直接】表示。

6樓:花開勿敗的雨季

因為二重來積分的面積微自元dxdy就表示積分割槽bai域微元的面積,那du麼直接積分就得到總的面zhi積dao,所以被積函式即為1.

類似地,一重定積分的微元為座標長度dx,為了求面積,還需要知道矩形微元的高,即f(x),所以定積分求面積的被積函式是f(x)。

7樓:匿名使用者

當積分割槽域d是平面區域時,∫∫dxdy=d的面積。

8樓:匿名使用者

∫∫ k ds = k ∫∫ ds = ks

9樓:霖鎅

被積函式是1 的話 是f(x,y)=1→z=1 相當於高等於1

為什麼二重積分的被積函式為常數時,代表的是積分割槽域的面積

10樓:扯淡的哲人

你要從二重積分積分的意義和本質

上理解較為簡單。

給你個對二重積分本質的比較形象的理解,就是要充分理解這張圖。

z=f(x,y)就是積分函式,他是個由x,y共同決定的算式。

積分的過程就是:

把xoy這個平面,無限的分成一堆小區域(你可以理解為一堆小圓圈或者小方格),把每個小區域的面積,乘以這個小區域對應的f(x,y)。最後把這些值都加起來。

如果f(x,y)是個常數k呢,那麼結果就是:每個小區域的面積都乘以這個不變的常數,然後把他們加起來。這樣我們就可以把這個常數k提出來。

積分結果為:常數k*所有小面積的加和。

因為所有小面積的加和就是整個積分割槽域的面積,所以,積分結果就為:

整個積分割槽域面積的k倍。(你之前的描述是不準確的)

其實就是一個以整個積分割槽域為橫截面,高度為k的一個柱體的體積。(注意,從意義上說,二重積分積出來的都是體積,不是面積,只不過柱體的體積就等於面積的k倍)

這樣應該可以讓你從本質上,直觀的理解二重積分,也就知道了你問的那個問題了。

還有什麼想問的都可以追問,如果幫到您,敬請採納,謝謝~

11樓:華華華華華爾茲

二重積分的被積函式為常數時,代表的是積分割槽域的面積,這句話是不對的。

1、因為是常數,既然是常數,就可以提取到積分符號外面;

2、一旦提取到積分符號外,那積分符號下的dxdy就是一個微元面積,整個區域的積分就是總面積。

3、由於積分符號外有一個常數,當初積分符號下的常數,可能是沒有單位的  單純的數學常數,這個常數乘以dxdy,其意義就是面積的倍數。

4、假如x、y不是真正的座標,而是抽象的變數,那 z = constant 可能是:等溫過程、等壓過程、等容過程。

5、假如x、y是真正的座標,也容易理解,這個 z = constant。  在數學上,這就是一個identity,就是一個恆等式。  例如 sin²x + cos²x = 1,這個恆等式跟x的取值無關;  又如 arcsin(x+y) + arccos(x+y) = ½π,

這個恆等式跟x、y的取值無關可能是指:在物理上,這就是一個conservation,是一個守恆定律。

例如:不考慮勢能時,有動能定理。同樣不考慮動能時,也可以全用勢能表示,當然是在保守系中才行。

擴充套件資料:

幾何意義:在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

例如二重積分

其中表示的是以上半球面為頂,半徑為a的圓為底面的一個曲頂柱體,這個二重積分即為半球體的體積

數值意義:二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。如函式:

其積分割槽域d是由

所圍成的區域。

其中二重積分是一個常數,不妨設它為a。對等式兩端對d這個積分割槽域作二重定積分。

故這個函式的具體表示式為:f(x,y)=xy+1/8,等式的右邊就是二重積分數值為a,而等式最左邊根據性質5,可化為常數a乘上積分割槽域的面積1/3,將含有二重積分的等式可化為未知數a來求解。

關於二重積分幾何意義的問題?當∫∫1dxdy的時候,被積函式為1,也就是說求出來的是面積,是這麼理解嗎?

12樓:匿名使用者

被積函式如果是1,的確是積分割槽間的面積,如果把1換成x,那就是體積了,簡單來說,一重積分可以看作面積,二重積分是體積,三重積分就是質。因為高度為1的物體體積與其底面積的大小是一樣的

13樓:匿名使用者

求出來的不是面積. 二重積分的幾何是曲頂柱體的體積,怎麼能說是面積呢.(單位是不一樣的)

應該說當被積函式為1時,二重積分的積分值等於積分割槽域的面積值.

注意,這裡指是數值.

14樓:鑽時封芯

而重幾分本來是相當於求體積的,而當被積函式為1時,也就相當於高為1,也就是說求的是面積了。此時就是高為1.

關於二重積分三重積分的聯絡,定積分與二重積分,三重積分的區別與聯絡是什麼,急,線上等

二重積分 有兩個自變數z f x,y 當被積函式為1時,就是面積 自由度較大 a b c d dxdy a 平面面積 當被積函式不為1時,就是圖形的體積 規則 和旋轉體體積 a b c d dxdy v 旋轉體體積 計算方法有直角座標法 極座標法 雅可比換元法等 極座標變換 x rcos y rsi...

關於二重積分和定積分的問題,定積分與二重積分

第一個積分變成第二個積分其實類似於定積分中的變數代換。比如,在第一個積分中令x u,y v 積分就變成 再令u y,v x 不就變成第二個積分了嗎。另外,你的第二個問題 定積分與二重積分 其實用二重積分求平面內任意圖形的面積是一個通用的方法!利用定積分求平面面積其實就是由二重積分推導來的!說得更具體...

二重積分,d是什麼意思,二重積分是什麼?

1 在積分中,無論是定積分,還是不定積分 無論是一重積 分 二重積分 還是多重積分 d 都表示微分的概念,d differentiation derivative。2 d的用法 有時表示積分割槽域,d domian d integral area region 有時表示求導符號 dy y 這是尤拉 ...