1樓:匿名使用者
|∫[-π
/4,π/4]x/(1+sinx) dx
= ∫[-π/4,π版/4]x(1-sinx)/(1-sin²x) dx
= ∫[-π/4,π/4]x(1-sinx)/cos²x dx
= ∫[-π/4,π/4]xsec²x dx - ∫[-π/4,π/4]xsecxtanx dx
= ∫[-π/4,π/4]x dtanx - ∫[-π/4,π/4]x dsecx
= xtanx - ∫[-π/4,π/4]tanx dx - xsecx + ∫[-π/4,π/4]secx dx
= [π/4 - π/4] + cosx - [π/4*√2 + π/(2√2)] + ln|secx+tanx|
= [1/√2 - 1/√2] - π/√2 + ln(sec(π/4)+tan(π/4) - ln(sec(-π/4)+tan(-π/4))
= -π/√2 + ln(√2+1) - ln(√2-1)
= ln(3+2√2) - π√權2
計算定積分∫(0→π)(xsinx)/(1+sin^2x)dx
2樓:匿名使用者
令x = π - y、dx = - dy
x = 0 → y = π
x = π → y = 0
m = ∫[0→π
636f707962616964757a686964616f31333330363837] (xsinx)/(1 + sin²x) dx
= ∫[π→0] [(π - y)sin(π - y)]/[1 + sin²(π - y)] (- dy)
= ∫[0→π] [(π - x)sinx]/(1 + sin²x) dx
= π∫[0→π] sinx/(1 + sin²x) dx - m
2m = π∫[0→π] sinx/[1 + (1 - cos²x)] dx
m = (- π/2)∫[0→π] d(cosx)/(2 - cos²x)
= (π/2)[1/(2√2)]∫[0→π] [(cosx + √2) - (cosx - √2)]/[(cosx - √2)(cosx + √2)] d(cosx)
= [π/(4√2)]∫[0→π] [1/(cosx - √2) - 1/(cosx + √2)] d(cosx)
= [π/(4√2)]ln[(cosx - √2)/(cosx + √2)] |[0→π]
= [π/(4√2)]
= [π/(2√2)]ln[(√2 + 1)/(√2 - 1)] ≈ 1.9579
3樓:李榮華
給個郵箱吧,發手寫版的
求定積分 1 sinx 2dx從2到
1 sinx 2dx 從 2到 2 2 2 1 2sinx sin x dx 2 2 1 sin x dx 2 2 2 sinx dx 2 0 2 1 sin x dx 0 2 0 2 1 1 cos 2x 2 dx 2 0 2 3 2 1 2 cos 2x dx 2 3x 2 1 4 sin 2x...
用定積分的幾何意義求上1下01xdx
見圖,此積分的幾何意義是1 x在 0,1 內的部分與x軸所圍的圖形的面積。令1 x與x和y軸的交點分別為a 1,0 b 0,1 s 1 2 oa ob 1 2 1 1 1 2 利用定積分的幾何意義證明 上1,下0 sqrt 1 x 2 dx 上1下0 xdx 幾何意義的話,因為y sqrt 1 x ...
求不定積分sinx1cosxdx
sinx 1 cosx dx 1 1 cosx d cosx 1 1 cosx d cosx 1 in 1 cosx c 2sin x 2 cos x 2 2cos x 2 2 dx tan x 2 dx 2 tan x 2 d x 2 2 cos x 2 d cos x 2 2ln cos x 2...