關於平面向量基本定理,平面向量基本定理是什麼

2021-03-19 18:34:00 字數 1027 閱讀 7185

1樓:匿名使用者

因為如果兩個基底都共線了!那那兩個基底所表示的直線就只能在基底所在直線上!而不能表示整個平面內的任何一條直線了!

2樓:匿名使用者

共線了就組不成各種各樣的三邊四邊形了...共線了那就只是一條線啊

3樓:韻淵

基底的意思就是他們線性無關

而線性無關與不共線是等價的,因此基底不共線

共線的就不是基底了

平面向量基本定理是什麼

4樓:雪妖

如果兩個向量a、b不共線,那麼向量p與向量a、b共面的充要條件是:存在唯一實數對x、y,使p=xa+yb。

事實上,這個定理表明,平面向量可以在任意給定的兩個方向上分解,任意兩個向量都可以合成一個給定的向量,即向量的合成和分解。

當兩個方向相互垂直時,它們實際上是在直角座標系中分解的,(x,y)稱為向量的座標。(向量的起點是原點)所以這個定理為向量的座標表示提供了理論基礎。

擴充套件資料;

正誤判斷;

1、若a=0,則對任a·b≠0. 錯(當a⊥b時,a · b=0)

2、若a≠0,a · b=0,則b=0錯(當a和b都不為零,且a⊥b時,a · b=0)

3、若a · b=0,則a · b中至少有一個為0. 錯(可以都不為0,當a⊥b時,a · b=0成立)

4、若a≠0,a · b=b · c,則a=c錯(當b=0時)

5、若a · b=a · c,則b≠c,當且僅當a=0時成立. 錯(a≠0且同時垂直於b,c時也成立)

6、對任意向量a有a·a=∣a∣* ∣a∣

平面向量的線性運算:加法為三角形法則'平行四邊形法則'。定理:向量a與b共線,a不等於零,有且只有唯一一個實數c,使b=ca。

5樓:須咗能乎

如果e1和e2是同一平面內的兩個不共線向量,那麼對該平面內的任一向量a,存在唯一一對有序實數(x 、y) ,使 a= xe1+ ye2。

平面向量基本定理的本質,平面向量基本定理是什麼

如果e1和e2是同一平面內的兩個不共線向量,那麼對該平面內的任一向量a,存在唯一一對有序實數 x y 使 a xe1 ye2。在平面直角座標系中,分別取與x軸,y軸方向相同的兩個單位向量i j作為基底,a為座標平面內的任意向量,以座標原點o為起點作向量op a。有平面向量基本定理可知,有且只有一對實...

平面向量問題,平面向量的問題

bc ac ab a 2b 7a 3b 6a 5b。平面向量的問題 因為向量的夾角為鈍角時 cos 0 且 180度所以是鈍角的充要條件是 x1y1 x2y2 0 且 x1y2 x2y1 0 即不共線 所以 2 1 1 a 0 且 2 a 1 1 0所以 a 2 且 a 1 2 可以求垂直的時候a的...

平面向量的叉乘出來是什麼向量,平面向量的叉乘出來是一個什麼向量?

按照座標運算來講,叉乘出來是一個 0,0 即零向量。兩個向量點乘,得到的是兩個向量的數量積 數量積是一個數量,沒有方向。兩個向量叉乘,得到的向量積是一個向量。而向量乘以實數,得到的仍是一個向量。叉乘出來還是一個向量 點乘出來是一個數 平面向量的外積是什麼 在學到向量是,課本上突然定義了內積和外積,沒...